The Swing-in
Ein Lautsprecher versucht Transienten zu reproduzieren, indem er einschwingt. Dieses Einschwingen erfolgt gemäß seiner Übertragungsfunktion, sofern es keine Nichtlinearitäten gibt, z.B. Resonanzen. Die Übertragungsfunktion beschreibt das Einschwingverhalten und den Unterschied der ersten zu den nachfolgenden Halbwellen, dem quasi-eingeschwungenen Zustand. Sie ist gekennzeichnet durch einen Hochpass beim Tieftöner und einen Tiefpass beim Hochtöner, welche beide die Grenzen der Bandbreite des Lautsprechers bestimmen. Und beide zeigen ein entgegengesetztes Verhalten bei den Einschwingverzerrungen der Signale. Bei komplexen Resonanzerscheinungen versagt eine einfache Übertragungsfunktion allerdings völlig. HochtönerBeim dynamischen Musiksignal geht es um die Schnelligkeit. Die Anstiegsflanken und -zeiten der Impulse hängen von der Fähigkeit des Hochtöners ab, extrem schnell einzuschwingen. Beim Hochtöner, am oberen Übertragungsende, ist insbesondere die Resonanzfrequenz der Membran ausschlaggebend. Wenn ein Hochtöner im Frequenzgangdiagramm sehr hohe Frequenzen überträgt, heißt das noch nicht, dass er schnell ist. Bei vielen Hochtönern verläuft der Frequenzgang nur deshalb bis 20 kHz, weil Tiefpass und Membranresonanz derart abgestimmt worden sind, dass sich daraus ein nahezu linearer Verlauf im eingeschwungenen Zustand ergibt. Zu erkennen ist das an einem steilen Abfall oberhalb der Resonanzfrequenz, also am Ende des im Frequenzgang sichtbaren Übertragungsbereichs. Aber ein hoher Hochtonpegel, verursacht durch die Membran-Resonanz, muss erst einschwingen, und das dauert zwei bis drei Halbwellen! Das Signal- / Zeitverhalten sieht dabei allerdings meist schon ab 5 bis 10 kHz schlecht aus. Bemerkenswert sind die Angaben der oberen Grenzfrequenz (-3 dB) bei einigen Herstellern. So wird zum Beispiel für den Accuton BD20 (20 mm Diamantmembran) eine obere Grenzfrequenz von 100 kHz deklariert. Tatsächlich, nach Messungen des Chassis-Herstellers, liegt der -3 dB Punkt aber bei ≈ 44 kHz, das allerdings ohne eine sich überlagernde Haupt-Membranresonanz.
Diese liegt bei ≈ 60 kHz (ca. -10 dB Punkt / je nach Mikro). Bei der Angabe der 100 kHz hat der Herstellers also um mehr als eine Oktave "geschönt" ! |
Datei:Lautsprecher-purus-11-by-michael-weidlich.jpg |
Die Einschwingvorgänge (1. Halbwelle) erfolgen aufgrund des Tiefpassverhaltens nicht mit der Anregungsfrequenz, beinhalten regelmäßig tiefere Frequenzen und die Amplitude liegt deutlich unter dem Wert im eingeschwungenen Zustand. Sie dauern länger als das Inputsignal und bewirken dadurch eine nacheilende Phase. Klanglich bedeutet das, dass die Hochtonimpulse zu leise und in der Tonhöhe zu tief sind. Der eingeschwungene Frequenzgang gaukelt uns aber etwas ganz anderes vor!
Wenn der Tiefpass des Systems erst bei sehr hohen Frequenzen wirkt, wie zum Beispiel bei der Myro Amur D mit dem Diamanthochtöner, dann ist das Einschwingen (die Startflanke der Sprungantwort) derart schnell, dass man nahezu eine Rechteckflanke bekommt. Ein tieferer Tiefpass bewirkt eine Verzögerung der Energie und somit ein zeitlich verzögertes Aufaddieren und somit die typische Rampe eines typischen "zeitrichtigen" Lautsprechers. Den Hochpass sieht man natürlich immer noch im Abfallen des Graphen. Dazwischen ist der Lautsprecher sehr breitbandig phasenlinear.
TieftönerIm Tiefbassbereich bewegen wir uns im physikalischen Grenzbereich der in ihren geometrischen Dimensionen begrenzten Wandler und der zur Vermeidung akustischer Kurzschlüsse notwendigen Gehäuse. Tiefe Frequenzen sind langsame Schwingungen. Ein Tieftöner muss dabei Druck bei einer sich mit ca. 345 m/s entfernenden Schallwelle erzeugen. Dabei ist die Membran im Verhältnis zur Wellenlänge klein. Das erfordert eine extrem weite Auslenkung zur originalgetreuen Reproduktion gerade der ersten Halbwelle, wie z.B. bei dem Anschlagen einer Bassdrum. Dafür ist selbst der Hub von Langhubchassis völlig unzureichend.
Alle Funktionen haben eine Zeitkonstante. Das Einschwingen eines Lautsprechers unterliegt mehrerer komplexer Zeitkonstanten. |
Schauen wir uns das Einschwingverhalten von Instrumenten und Geräuschen an: Bei natürlichen Schallereignissen sind die ersten Halbwellen in der Regel die lautesten. Die nachfolgenden Halbwellen werden mehr oder weniger schnell leiser. Somit haben wir bei den Lautsprechern ein unnatürliches, entgegengesetztes Verhalten. Dieses ist bei Gehäuseabstimmungen mit zusätzlichem Resonanzsystem noch unnatürlicher, da das Verhältnis von ersten zu nachfolgenden Halbwellen noch entgegengesetzter wird. Je besser der gesamte Phasenverlauf eines Lautsprechers im mittleren und oberen Bereich wird (auch im Einschwingen), desto mehr fällt das schlechte Verhalten zu tiefen Tönen hin auf.
Was kann man technisch korrigieren?Digital...
Ähnlich problematisch zeigt sich die Korrektur von raumbedingten Auslöschungen. Eine Regelung bringt am unteren Übertragungsende Vorteile, besonders im eingeschwungenen Zustand. Der eingeschwungenen Zustand unterliegt jedoch im Bass vollständig der Raumresonanzproblematik, mit all den Wirkungen und Einschränkungen beim Versuch der Korrektur. Im Bass müsste man unbedingt den Raum mitkorrigieren, sonst macht es keinen Sinn. Das ist aber nur sehr eingeschränkt möglich, und wenn - für welchen Platz im Raum? Zudem bwirken Raumresonanzen leicht 10 dB Amplitudenschwankungen. Das ist mächtig gegenüber der Wirkung einer Regelung. Der Detektor muss sich also am Hörplatz befinden! Im mittleren und besonders im oberen Übertragungsbereich eines Chassis sind die vielfältigen Resonanzerscheinungen (Membranresonanzen, Resonanzen des bzw. mit dem Spider und mit der Randaufhängung usw.) nicht mehr induktiv erfassbar. Die Resonanzen wirken mit ihrer Bewegungsenergie nicht mehr eindeutig auf das Antriebssystem. Eine Regelung ist also im größten Teil des Übertragungsbereichs nicht mehr sinnvoll möglich. Da funktioniert eine Steuerung besser. |
Datei:Amur.jpg |
<zurück: Myroklopädie>
<zurück: Myro>