Difference between revisions of "The Swing-in"
(→Tieftöner) |
|||
Line 12: | Line 12: | ||
Alle Funktionen haben eine Zeitkonstante. Das Einschwingen eines Lautsprechers unterliegt mehrerer komplexer Zeitkonstanten.<br /> | Alle Funktionen haben eine Zeitkonstante. Das Einschwingen eines Lautsprechers unterliegt mehrerer komplexer Zeitkonstanten.<br /> | ||
Wer einen bestimmten Anspruch an das Übertragungsverhalten im Tieftonbereich stellt, muss also genau definieren, was er damit meint. Eine Bassdrum richtig wiederzugeben, erfordert einen gigantisch großen Basslautsprecher mit entsprechenden Gehäusebedingungen. Im Resonanzfall lässt sich der erforderliche Frequenzbereich zwar durch die üblichen Formate erzeugen, sogar Miniboxen könnte man dazu bringen, aber im Einschwingen, dem markantesten und lautesten Moment einer Bassdrum, haben kleine Lautsprecher keine Chance!<br /> | Wer einen bestimmten Anspruch an das Übertragungsverhalten im Tieftonbereich stellt, muss also genau definieren, was er damit meint. Eine Bassdrum richtig wiederzugeben, erfordert einen gigantisch großen Basslautsprecher mit entsprechenden Gehäusebedingungen. Im Resonanzfall lässt sich der erforderliche Frequenzbereich zwar durch die üblichen Formate erzeugen, sogar Miniboxen könnte man dazu bringen, aber im Einschwingen, dem markantesten und lautesten Moment einer Bassdrum, haben kleine Lautsprecher keine Chance!<br /> | ||
− | Digital lässt sich zwar die Gruppenlaufzeit entzerren, jedoch bleibt stets das Problem der fehlenden Amplitude im Einschwingen - in dem Zeitraum, wo der Strahlungswiderstandsverlauf die Rahmenbedingungen setzt, bevor der Resonanzfall eintritt. Das richtige Wandeln in den Grenzbereichen des Übertragungssystems, die richtigen Zeit-Amplitudenbeziehungen zu erreichen, ist physikalisch unmöglich. Was bleibt, ist die praxisgerechte, von jedem individuell zu bestimmende maximale Größe der Membranfläche und der erforderlichen Konstruktion. Für diese individuellen Anforderungen müssen Lautsprecher in entsprechenden, immer begrenzten Größen entwickelt werden. Und diese sollen innerhalb des physikalisch möglichen Übertragungsbereichs möglichst richtig wandeln. | + | Digital lässt sich zwar die Gruppenlaufzeit entzerren, jedoch bleibt stets das Problem der fehlenden Amplitude im Einschwingen - in dem Zeitraum, wo der Strahlungswiderstandsverlauf die Rahmenbedingungen setzt, bevor der Resonanzfall eintritt. Das richtige Wandeln in den Grenzbereichen des Übertragungssystems, die richtigen Zeit-Amplitudenbeziehungen zu erreichen, ist physikalisch unmöglich. Was bleibt, ist die praxisgerechte, von jedem individuell zu bestimmende maximale Größe der Membranfläche und der erforderlichen Konstruktion. Für diese individuellen Anforderungen müssen Lautsprecher in entsprechenden, immer begrenzten Größen entwickelt werden. Und diese sollen innerhalb des physikalisch möglichen Übertragungsbereichs möglichst richtig wandeln.<br /> |
+ | Die erste Halbwelle wird von Basslautsprechern nicht vollständig ausgebildet, d.h. der erste Nulldurchgang erfolgt deutlich vor 180 Grad. Der Bass ist voreilend! Filter verzögern mit zunehmender Ordnung verstärkt im Bereich des Tiefpasses. | ||
<''zurück: [[Myroklopädie]]''><br /> | <''zurück: [[Myroklopädie]]''><br /> | ||
<''zurück: [[Myro]]''> | <''zurück: [[Myro]]''> |
Revision as of 13:55, 19 April 2016
Hochtöner
Tieftöner
Im Tiefbassbereich bewegen wir uns im physikalischen Grenzbereich der in ihren geometrischen Dimensionen begrenzten Wandler und der zur Vermeidung akustischer Kurzschlüsse notwendigen Gehäuse. Tiefe Frequenzen sind langsame Schwingungen. Ein Tieftöner muss dabei Druck bei einer sich mit ca. 345 m/s entfernenden Schallwelle erzeugen. Dabei ist die Membran im Verhältnis zur Wellenlänge klein. Das erfordert eine extrem weite Auslenkung zur originalgetreuen Reproduktion gerade der ersten Halbwelle, wie z.B. bei dem Anschlagen einer Bassdrum. Dafür ist selbst der Hub von Langhubchassis völlig unzureichend.
Das Bassverhalten wird elementar bestimmt durch den Strahlungswiderstand und den Resonanzfall des schwingenden Systems. Beide Aspekte wirken zusammen und beinhalten Zeitkonstanten, haben also einen zeitlichen Verlauf. Frequenzgangmessungen zeigen nur die Schallamplitudenwerte des eingetretenen Resonanzfalls. Diese werden aufgrund der Zeitkonstante jedoch erst verzögert erreicht. Zuvor, im Einschwingen, verhält sich ein Lautsprecher gemäß dem Strahlungswiderstandsverlauf, resultierend aus Membranfläche und Membranschnelle (Frequenz). Hinzu kommen die Nichtlinearitäten des Antriebs.
Der Amplitudenfrequenzgang am unteren Übertragungsende ist gekennzeichnet durch den zeitlichen Übergang des durch den Strahlungswiderstand bedingten Hochpasses in den durch Strahlungswiderstand und Resonanz bedingten Hochpass. Die Hochpassfunktion eines Lautsprechers ist wesentlich eine Überlagerung von drei Funktionen:
- der Funktion des Strahlungswiderstands
- der Funktion des mechanischen schwingenden Systems (Resonanzfrequenz)
- der elektrischen Funktion (BxL + Schwingspuleninduktivität und ohmscher Widerstand)
Alle Funktionen haben eine Zeitkonstante. Das Einschwingen eines Lautsprechers unterliegt mehrerer komplexer Zeitkonstanten.
Wer einen bestimmten Anspruch an das Übertragungsverhalten im Tieftonbereich stellt, muss also genau definieren, was er damit meint. Eine Bassdrum richtig wiederzugeben, erfordert einen gigantisch großen Basslautsprecher mit entsprechenden Gehäusebedingungen. Im Resonanzfall lässt sich der erforderliche Frequenzbereich zwar durch die üblichen Formate erzeugen, sogar Miniboxen könnte man dazu bringen, aber im Einschwingen, dem markantesten und lautesten Moment einer Bassdrum, haben kleine Lautsprecher keine Chance!
Digital lässt sich zwar die Gruppenlaufzeit entzerren, jedoch bleibt stets das Problem der fehlenden Amplitude im Einschwingen - in dem Zeitraum, wo der Strahlungswiderstandsverlauf die Rahmenbedingungen setzt, bevor der Resonanzfall eintritt. Das richtige Wandeln in den Grenzbereichen des Übertragungssystems, die richtigen Zeit-Amplitudenbeziehungen zu erreichen, ist physikalisch unmöglich. Was bleibt, ist die praxisgerechte, von jedem individuell zu bestimmende maximale Größe der Membranfläche und der erforderlichen Konstruktion. Für diese individuellen Anforderungen müssen Lautsprecher in entsprechenden, immer begrenzten Größen entwickelt werden. Und diese sollen innerhalb des physikalisch möglichen Übertragungsbereichs möglichst richtig wandeln.
Die erste Halbwelle wird von Basslautsprechern nicht vollständig ausgebildet, d.h. der erste Nulldurchgang erfolgt deutlich vor 180 Grad. Der Bass ist voreilend! Filter verzögern mit zunehmender Ordnung verstärkt im Bereich des Tiefpasses.
<zurück: Myroklopädie>
<zurück: Myro>