Difference between revisions of "Interpretation Of Jump Answers - Examples From The Measurement Technique"

(Keine Beschreibung eines spezifischen Gerätes, Eher Werbung)
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
=== Der ideale Verlauf ===
+
{{delete candidate}}
 +
=== The ideal course ===
  
Die Anregung des Lautsprechers ist ein Rechteck, d.h. die Membranen werden sprunghaft nach vorne bewegt. Dadurch entsteht eine Druckwelle, die sich in Bewegungsrichtung ausbreitet. Da nach Vollendung der Vorwärtsbewegung der Membranen kein weiterer Druck entsteht, kommt es zu einem Druckausgleich in der Luft. Dieser Druckausgleich zeigt sich in der Sprungantwort in Form einer langgezogenen Unterschreitung der Nulllinie. Dadurch wird der ursprüngliche statische Druck der Umgebung wieder hergestellt. Dieser Druckausgleich durch Unterdruck kann jedoch nur die Energie beinhalten, die zuvor auf die Luft in Form einer Druckwelle ausgeübt worden ist.  
+
The excitation of the loudspeaker is a square wave, i.e. the diaphragms are moved forward abruptly. This creates a pressure wave that propagates in the direction of motion. Since there is no further pressure after the forward movement of the diaphragms is complete, there is a pressure equalization in the air. This pressure equalization is manifested in the step response in the form of an elongated undershoot of the zero line. This restores the original static pressure of the environment. However, this pressure compensation by negative pressure can only contain the energy that was previously exerted on the air in the form of a pressure wave. <br />
 +
However, if we see a clear disproportion between pressure input above and pressure compensation below the zero line, there can be two possible explanations:
 +
*the moving mass (the tensioned spring) is very poorly damped
 +
and / or the woofer doesn't swing forward at all, thus producing a negative pressure wave instead of a pressure wave
 +
The sound waves would thus be "in phase" with a phase difference of 180 degrees.  
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
| [[Datei:Picture2.jpg]]Sprunganregung
+
| [[File:Picture2.jpg]]Jump excitation
| [[Datei:Picture3.jpg]]Antwort des Lautsprechers
+
| [[File:Picture3.jpg]]Response of the loudspeaker
 
|-
 
|-
 
|
 
|
Das Sprungsignal besitzt eine unendlich steile Anstiegsflanke und bleibt ab diesem „Einschaltzeitpunkt“ konstant auf dem maximalen Wert.
+
The step signal has an infinitely steep rising edge and remains constant at the maximum value from this "switch-on" point on.
 
|
 
|
Ein idealer Lautsprecher, der das Übertragungsverhalten eines Bandpasses mit einer oberen und einer unteren Grenzfrequenz besitzt, überträgt das Sprungsignal mit einer möglichst steilen Anstiegsflanke und einem möglichst langsamen und gleichmäßigen Abfall. Die Anstiegszeit ist umgekehrt proportional zur oberen Grenzfrequenz, die Ausschwingdauer umgekehrt proportional zur unteren Grenzfrequenz.
+
An ideal loudspeaker, which has the transmission behaviour of a bandpass with an upper and a lower cut-off frequency, transmits the step signal with a rising edge that is as steep as possible and a falling edge that is as slow and even as possible. The rise time is inversely proportional to the upper cutoff frequency, and the decay time is inversely proportional to the lower cutoff frequency.
 
|}
 
|}
''Quelle: www.audio-intl.com''<br />
+
''Source: www.audio-intl.com''<br />
  
Sehen wir allerdings ein deutliches Missverhältnis zwischen Druckeintrag oberhalb und Druckausgleich unterhalb der Null-Linie, kann es zwei mögliche Erklärungen geben:
+
The step response looks ideally different than ideally related to a limited transmission range. It approaches more and more a square wave the more broadband and phase-locked a system is. You will always see the low pass at the beginning and the high pass at the end.
*Die bewegte Masse (die gespannte Feder) ist sehr schlecht bedämpft
+
Music doesn't produce square wave signals, but it does produce something similar, such as hand clapping or percussion instruments. The point is to check and recognize if a loudspeaker is able to follow the dynamic music signal or not. For this purpose, the first rectangle or the jump is of particular importance.
*und / oder der Tieftöner schwingt gar nicht nach vorne, erzeugt also anstatt einer Druckwelle eine Unterdruckwelle
 
Die Schallwellen wären somit mit einer Phasendifferenz von 180 Grad "in Phase".  
 
  
Wenn wir uns eine verzerrte Sprungantwort anschauen, wissen wir, dass das Übertragungsverhalten nicht stimmt.
+
'''Small deviations from the ideal'''<br />
Wenn wir eine Sprungantwort mit annähernd richtiger Grundcharakteristik anschauen, sieht das erst einmal nach "richtig" aus.
+
When we look at a distorted step response, we know that the transfer response is not correct.
Dennoch gibt es auch hier Abweichungen, die eben nicht in einem auf und ab des Graphen versteckt sind, sondern bloßgestellt in Form von Nichtlinearitäten im Verlauf des Graphen sichtbar sind.
+
When we look at a step response with approximately correct fundamental characteristics, it looks "right" at first.
Nahezu so, wie wir es beim Lesen von Frequenzgangkurven und Phasendiagrammen kennen. Wir sollten uns nicht vom optischen Eindruck der Messkurven täuschen lassen.
+
However, there are deviations which are not hidden in the up and down of the graph but are visible in the form of non-linearities in the course of the graph.
Ähnlich aussehende Sprungantworten beispielsweise können deshalb zu sehr unterschiedlich klingenden Lautsprechern gehören, weil die scheinbar kleinen Unterschiede im Verlauf des Graphen durchaus auf deutliche Nichtlinearitäten hinweisen. Diese Nichtlinearitäten sind natürlich auch Signalverformungen, wenn auch der leichteren Art. Die Startflanken verschiedener Chassis zeitlich zu synchronisieren, ist erst der erste elementare Schritt hin zum richtigen Wandeln. Das heißt aber noch lange nicht, dass die Frequenzganglinearität gut ist und die Resonanzen unter Kontrolle sind usw. Die Welligkeiten und Verformungen von Sprungantworten weisen auf jede Menge Fehler hin. Es sind Abweichungen vom Original und die sind auch hörbar und führen dementsprechend zu berechtigter Kritik. Frequenzgang-Nichtlinearitäten außerhalb der Achse spiegeln sich natürlich immer auch in dem Graphen der Sprungantwort wieder, genauso, wie z.B. bei der Wiedergabe eines Sinus-Burst oder bei der Wiedergabe von Musik.
+
Almost like we know it from reading frequency response curves and phase diagrams. We should not be deceived by the visual impression of the measurement curves.
Das ist bei jedem Lautsprecher so, bei stark verzerrten Spungantworten aber nicht so gut abzulesen.<br />
+
Similar looking step responses, for example, may therefore belong to very different sounding loudspeakers, because the seemingly small differences in the course of the graph may well indicate significant non-linearities. These non-linearities are of course also signal deformations, albeit of the lighter kind. Synchronizing the starting edges of different drivers in time is only the first elementary step towards proper conversion. But this does not mean that the frequency response linearity is good and the resonances are under control etc..  
Nur wenn man das Einschwingen über den gesamten Frequenzbereich im Detail misst, erkennt man erst, wie viele Oktaven von einem scheinbar "kleinen" Zappler am Anfang der Sprungantwort betroffen sind.
 
Die Verzerrungen beginnen bereits im Mitteltonbereich und betreffen den gesamten Hochtonbereich.<br />
 
  
=== Das erste Beispiel ===
+
The ripples and deformations of step responses indicate lots of errors. They are deviations from the original and they are also audible and accordingly lead to justified criticism.
 +
In the frequency response small resonance points are often hardly visible or at least not assessable. Often they are below - 20 dB. In the step response they show themselves by a more or less strong deformation of the graph; sometimes it is only a small hump that appears on the otherwise quite ideal course of the graph. This tiny hump or spike can significantly distort the sound image and spatial imaging and interfere with the natural perception of sound.
 +
In noise you can hear phenomena &lt; -30 dB with enough concentration. A phase shift or even inversion is always audible.<br />
 +
Frequency response non-linearities off-axis are of course always reflected in the graph of the step response, just as, for example, in the reproduction of a sine burst or in the reproduction of music.
 +
This is the case with every loudspeaker, but it is not so easy to read with highly distorted step responses. Only if you measure the transient response over the entire frequency range in detail, you can see how many octaves are affected by a seemingly "small" fidget at the beginning of the step response.
 +
The distortions already start in the midrange and affect the entire high frequency range.<br />
  
Wir beginnen mit Lautsprechern, die eine leicht interpretierbare Sprungantwort aufweisen. Das dient dem Einstieg in das Thema und macht das Verstehen einfacher. Die Auswahl der Beispiele dient den Erläuterungen und ist ansonsten beliebig.
+
=== The first example ===
(Quelle: www.stereophile.com)
 
  
Die folgenden vier Diagramme sind von demselben Lautsprecher: '''Vandersteen 2Ce Signature II'''.  
+
We start with loudspeakers that have an easily interpretable step response. This serves as an introduction to the topic and makes it easier to understand. The choice of examples is for explanatory purposes and is otherwise arbitrary.
Das Erste zeigt die Sprungantwort.
+
(Source: www.stereophile.com)
 +
 
 +
The following four diagrams are from the same speaker: '''Vandersteen 2Ce Signature II'''.  
 +
The first one shows the step response.
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|  
 
|  
[[Datei:107Vanfig08.jpg]]<br />
+
[[File:V2efig3.jpg]]<br />
''Diagramm 1: Sprungantwort''
+
''Diagram 1: Step response''
| [[Datei:107Vanfig09.jpg]]<br />
+
| [[File:V2efig3.jpg]]<br />
''Diagramm 2: Die Anteile der Sprungwort - Mittelhochtonsektion (rot), Tieftöner (blau)''
+
''Diagram 2: The proportions of the step response - mid-high section (red), woofer (blue)''
 
|}
 
|}
  
Die Überlagerung, das Zusammenspiel von Rot und Blau, ergibt in der Summe die Sprungantwort des Gesamtsystems (Diagramm 1). Die Messdiagramme sind unter Beachtung des geringen Mikrofonabstands zu bewerten. Die Summenbildung bei normalen Hörabständen sieht sicherlich besser aus.<br />
+
The superposition, the interaction of red and blue, results in the sum of the step response of the whole system (Diagram 1). The measurement diagrams are to be evaluated under consideration of the small microphone distance. The summation at normal listening distances certainly looks better.<br />
Die Sprungantwort startet mit der Anstiegszeit des Hochtöners.
+
The step response starts with the rise time of the tweeter.
Die in die Membranbewegung eingebrachte Energie wird etwas zeitverzögert in Schall gewandelt und es entsteht eine überhöhte Spitze bei 3,8 ms. Das ist bei der natürlich begrenzten Bandbreite des Schallwandlers typisch und ganz normal. Das auf und ab im Bereich der Spitze entspricht dem Frequenzgang des Hochtöners ab 8 kHz aufwärts.
+
The energy introduced into the diaphragm movement is converted into sound with a slight time delay, resulting in an exaggerated peak at 3.8 ms. This is typical and quite normal given the naturally limited bandwidth of the transducer. The up and down in the area of the peak corresponds to the frequency response of the tweeter from 8 kHz upwards.
(siehe Diagramm 3: Frequenzgang)<br />
+
(see diagram 3: frequency response)<br />
Im Bereich von 4 - 5 ms zeigt sich ein zu starker Durchhänger, den wir auch im Frequenzgangdiagramm als von den Höhen zu den Mitten abfallenden Verlauf sehen.
+
In the range of 4 - 5 ms there is a too strong sag, which we also see in the frequency response diagram as a slope from the highs to the mids.
Der Buckel bei 5 ms verweist auf ein leichtes Problem im Übergang vom Mittel- zum Tieftöner, ein leichter Phasendreher.
+
The hump at 5 ms points to a slight problem in the transition from mid to bass driver, a slight phase shift.
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
| [[Datei:107Vanfig04.jpg]]<br />
+
| [[File:V2efig3.jpg]]<br />
''Diagramm 3: Frequenzgang''
+
''Diagram 3: Frequency Response''
| [[Datei:107Vanfig06.jpg]]<br />
+
| [[File:V2efig3.jpg]]<br />
''Diagramm 4: Frequenzgang im Raum''
+
''Diagram 4: Frequency response in space''
 
|}
 
|}
  
Line 64: Line 72:
 
|-
 
|-
 
|  
 
|  
Bei dieser Art der Konstruktion (3-Wege LS mit Hochtöner oben, Mitteltöner und Tieftöner in dieser Reihenfolge darunter) ergibt sich in Kombination mit den phasenlinearen Übergängen der Treiber folgende Charakteristik:  
+
With this type of construction (3-way LS with tweeter on top, midrange driver and woofer in this order below) the following characteristic results in combination with the phase linear transitions of the drivers:  
Das vertikale Abstrahlverhalten im Übergangsbereich zwischen zwei Chassis, z.B. Mitteltöner und Bass, weist nach oben gerichtet eine Senke im Frequenzgang auf, auf Hörachse ist der Frequenzgang linear und nach unten gerichtet ergibt sich eine Überhöhung. Das ganze passiert zwischen Hochtöner und Mitteltöner in gleicher Weise. Der Lautsprecher strahlt somit über den gesamten mittleren Übertragungsbereich nach unten, in Richtung Fußboden gerichtet lauter ab als nach oben Richtung Decke.Der Fußboden ist in der Regel die näheste Reflexionsfläche. Somit überhöht sich der Frequenzgang wie in ''Diagramm 4'' zu sehen.
+
The vertical radiation pattern in the transition area between two drivers, e.g. midrange and bass, shows a dip in the frequency response when directed upwards, on the listening axis the frequency response is linear and directed downwards there is an exaggeration. The same happens between tweeter and midrange driver. The loudspeaker radiates louder downwards towards the floor than upwards towards the ceiling. The floor is usually the closest reflection surface. Therefore the frequency response increases as shown in ''Diagram 4''.
Abhilfe schafft nur stark schallabsorbierendes Material, am besten genau auf halber Strecke vom Lautsprecher zum Zuhörer.<br />
+
The only remedy is to use strongly sound-absorbing material, preferably exactly halfway from the loudspeaker to the listener.<br />
  
Grundsätzlich gilt:
+
Basically:
*Der Hochtöner bestimmt die maximale Anstiegsgeschindigkeit eines Impulses.
+
*The tweeter determines the maximum slew rate of an impulse.
*Das synchrone Einschwingen des Hochtöners mit dem Mittel- und Tieftöner bewirkt die volle Impuls-Dynamik. Eine Bassdrum beispielsweise klingt dann schnell und knackig, wenn alle Lautsprecherchassis synchron, in Phase einschwingen.  
+
*The synchronous transient of the tweeter with the midrange and woofer causes the full impulse dynamics. A bass drum, for example, sounds fast and crisp when all the loudspeaker drivers swing in synchronously, in phase.  
Jede Sprungantwort, die Mehrfachschwingungen aufzeigt, ist grundsätzlich falsch! Das ist ein eindeutiges Unterscheidungsmerkmal. Schwieriger wird es, einen Qualitätsmaßstab innerhalb der Gruppe der Lautsprecher aufzustellen, die sich im obigen Sinne "ideal" verhalten. Hier können Kriterien wie z.B.
+
Any step response that shows multiple oscillations is fundamentally wrong! This is a clear distinctive feature. It is more difficult to establish a quality standard within the group of loudspeakers that behave "ideally" in the above sense. Here, criteria such as
*die Übertragungsbandbreite
+
*the transmission bandwidth
*der Dynamikumfang
+
the dynamic range
*die "Linearität" des Graphen
+
the "linearity" of the graph
*das Abstrahlverhalten
+
the radiation behaviour
herangezogen werden. Das heißt, die Sprungantwort wird auf ihre Bandbreite untersucht, bei unterschiedlichen Pegeln, unter verschiedenen Winkeln gemessen und auf ihre "Linearität" hin untersucht. Mit "Linearität" ist die Gleichförmigkeit des Graphen mit der idealtypischen Form und die darauf ersichtliche Welligkeit gemeint. Man kann also erkennen, unter welchen Bedingungen die "korrekte" Sprungantwort vom Lautsprecher erzeugt wird und unter welchen Bedingungen nicht. Daraufhin ließe sich der Einsatzbereich des Lautsprechers bestimmen. Lautsprecher / Schallwandler, die innerhalb einer gewissen Bandbreite Rechtecke wiedergeben können, haben einen etwas anderen Verlauf der Sprungantwort, sie bilden kurzzeitig ein Plateau aus. Dies ist aufgrund der Unterschiede zwischen ersten und nachfolgenden Halbwellen nur in Verbindung mit einem im eingeschwungenen Zustand zu tiefen Tönen hin ansteigenden Frequenzgang möglich.
+
can be used. That is, the step response is examined for its bandwidth, measured at different levels, at different angles, and examined for its "linearity". By "linearity" is meant the uniformity of the graph with the ideal shape and the ripple apparent on it. So you can see under which conditions the "correct" step response is generated by the loudspeaker and under which conditions it is not. Thereupon the application area of the loudspeaker could be determined. Loudspeakers / transducers that are able to reproduce rectangles within a certain bandwidth have a slightly different characteristic of the step response, they form a plateau for a short time. Due to the differences between the first and subsequent half-waves, this is only possible in conjunction with a frequency response that rises towards low tones in the steady state.
 
|  
 
|  
[[Datei:107vandy140789.jpg]]<br />
+
[[File:Dalfig4.jpg]]<br />
 
''Vandersteen 2Ce Signature II''
 
''Vandersteen 2Ce Signature II''
 
|}
 
|}
  
=== Weitere Beispiele ===
+
=== The second example ===
 +
 
 +
{| class="wikitable" border="1"
 +
|-
 +
| [[File:V2efig3.jpg]]
 +
 
 +
| [[File:Dalfig4.jpg]]
 +
|}
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 +
|-
 +
|
 +
The graphs above show the step responses of a three-way semi-active loudspeaker: <br />
 +
Blue: mid-high<br />
 +
Red: active bass<br />
 +
Black: Sum signal<br />
 +
 +
This step response is typical of many three-way speakers with steep-edged filters. Sometimes the mid/high range is in phase, sometimes, as in this case, in phase opposition to the bass driver. Quite clearly visible is the highly distorted transient and the time sequence of the sound components of the tweeter, midrange and bass drivers. The midrange-woofer transient, which is completely separated from the tweeter, and the bass transient, which is completely separated from the midrange-treble (red graph), show the missing reference, the tearing apart of the sound components.
 +
It is irrelevant how many milliseconds lie in between. What is decisive is the sound waveform of the superposition, the sound that characterizes the percussion.
 +
 
|-
 
|-
 
|  
 
|  
[[Datei:1207VQWfig8.jpg]]<br />
+
''Frequency response of the loudspeaker''<br />
''Quelle: www.stereophile.com''
+
 
 +
[[File:V2efig3.jpg]]
 +
|}
 +
 
 +
=== Further examples ===
 +
 
 +
{| class="wikitable" border="1"
 +
|-
 +
|
 +
[[File:V2efig4.jpg]]<br />
 +
''Source: www.stereophile.com''
 
|  
 
|  
Es gibt Nichtlinearitäten im Übertragungsverhalten von Lautsprechern, die grundsätzlich aus der begrenzten Übertragungsbandbreite resultieren.
+
There are non-linearities in the transmission response of loudspeakers, which basically result from the limited transmission bandwidth.
Diese Grenzen sind bei Lautsprechern mit weitgehend korrekter Sprungantwort auch klar zu sehen. Ganz am Anfang, dort wo das Signal beginnt, bei ca. 3,7 ms müsste der Graph senkrecht in die Höhe gehen. Der Hochtöner hat aber seine Grenze in der Anstiegszeit und die Energie, die eigentlich am Anfang erzeugt werden müsste, wird leicht verzögert.
+
These limitations are also clearly seen in loudspeakers with largely correct step response. At the very beginning, where the signal starts, at about 3.7 ms the graph should go vertically upwards. But the tweeter has its limit in the rise time and the energy that should actually be generated at the beginning is slightly delayed.
Das führt zu der ersten etwas überzogenen Spitze bei ca. 3,8 ms.
+
This leads to the first somewhat exaggerated peak at about 3.8 ms.
Da wird also Energie zeitverzögert abgestrahlt und überlagert den weitern Verlauf.<br />
+
So energy is radiated with a time delay and superimposed on the further course.<br />
Die Tieffrequente Begrenzung des Übertragungsverhaltens macht sich in einem mehr oder weniger starken Abfallen der Kurve bemerkbar.
+
The low frequency limitation of the transmission behaviour is noticeable in a more or less strong drop of the curve.
Fällt die Kurve ab der Spitze steil ab, so kann der Tieftöner die erste Halbwelle im Bassbereich nur schwach ausbilden.
+
If the curve drops steeply from the peak, the woofer is only able to produce the first half wave in the bass range weakly.
Verläuft der Graph flacher, dann gelingt dies besser. Um das beurteilen zu können, müssen die Sprungantworten unbedingt auf der Zeitachse gleich skaliert sein. Alle anderen Nichtlinearitäten, die im Verlauf der Kurve sichtbar sind, zeigen Frequenzgangfehler mit entsprechender Phasendrehung.
+
If the graph is flatter, this is more successful. To be able to judge this, the step responses have to be scaled equally on the time axis. All other nonlinearities visible in the course of the curve show frequency response errors with corresponding phase rotation.
 
|-
 
|-
 
|
 
|
[[Datei:Wilmaxx2fig7.jpg]]<br />
+
[[File:Dalfig4.jpg]]<br />
''Quelle: www.stereophile.com''
+
''Source: www.stereophile.com''
 
|
 
|
Diese Sprungantwort zeigt die Grenzen des Übertragungsbereichs ebenfalls, nur etwas schwerer zu erkennen, wie bei allen falschen Sprungantworten.
+
This step response shows the limits of the transmission range as well, just a little harder to see, as with all false step responses.
Der Mitteltöner ist hier verpolt und der Hochtöner hat eine sehr schlecht bedämpfte Membranresonanz, was im negativen Druckbereich in Form des Ringings auf der Kurve sichtbar ist. Die Nichtlinearität bei 4,7 ms ist entweder ein Fehler im Grundtonbereich oder bei größerem Messabstand schon die erste Raumreflexion. Eines ist ebenfalls klar: Egal mit welchem Signal man diesen Lautsprecher anregt, er schwingt eben falsch ein, verzerrt den Einschwingvorgang.  
+
The midrange driver here is polarized and the tweeter has a very poorly damped diaphragm resonance, which is visible in the negative pressure region in the form of the ringing on the curve. The non-linearity at 4.7 ms is either an error in the fundamental range or at a greater measuring distance already the first room reflection. One thing is also clear: no matter what signal is used to excite this loudspeaker, it will vibrate incorrectly, distorting the transient response.  
  
 
|-
 
|-
 
|
 
|
[[Datei:707Focfig7.jpg]]<br />
+
[[File:Aboutus acousticalreality image5.png]]<br />
[[Datei:707Focfig3.jpg]]<br />
+
[[File:707Focfig3.jpg]]<br />
''Quelle: www.stereophile.com''
+
''Source: www.stereophile.com''
 
|
 
|
'''Focal Electra 1037 Be'''<br />
+
'''Focal Electra 1037 Be''''<br />
  
Die folgende Sprungantwort ist exemplarisch für den Stand der Lautsprechertechnik. Es ist die Sprungantwort eines 3-Wege-Lautsprechers. Bei ca. 3,75 ms beginnt der Einschwingvorgang des Hochtöners.
+
The following step response is exemplary of the state of loudspeaker technology. It is the step response of a 3-way loudspeaker. At about 3.75 ms the transient response of the tweeter starts.
Das ist die erste Spitze die nach unten zeigt.
+
This is the first peak pointing downwards.
Der Hochtöner ist verpolt!
+
The tweeter's polarity is reversed!
  
Die zweite nach oben gerichtete Spitze erzeugt das völlig unkompensierte und zudem sehr schlecht bedämpfte Nachschwingen des Hochtöners. Die folgende nach unten gerichtete Schwingung zwischen 3,9 und 4,1 ms ist das Ergebnis der totalen Gegenphasigkeit von Hoch- und Mitteltöner. Der Mitteltöner ist das einzige nicht verpolte Chassis dieses Lautsprechers, dessen Einschwingvorgang seine Spitze bei ca. 4,3 ms zeigt. Die starke Senke ab ca. 4,6 ms unterhalb der Nulllinie, in den Unterdruckbereich, erzeugt das Basssystem. Auch hier sehen wir einen extremen Phasensprung.
+
The second peak pointing upwards produces the completely uncompensated and also very poorly damped post oscillation of the tweeter. The following downward oscillation between 3.9 and 4.1 ms is the result of the total antiphase of tweeter and midrange driver. The midrange driver is the only non-polarized driver of this loudspeaker, whose transient shows its peak at about 4.3 ms. The strong dip from about 4.6 ms below the zero line, into the negative pressure region, is produced by the bass system. Here we also see an extreme phase jump.
  
Fazit: <br />
+
Conclusion: <br />
Dieser Lautsprecher gleicht in bezug auf Phasen- und Zeitverhalten einer Achterbahn.  
+
This loudspeaker resembles a roller coaster in terms of phase and time response.  
Nicht nur der extreme zeitliche Versatz der Lautsprecherchassis ist hier von Bedeutung, viel mehr zeigt sich das Dilemma bei der Wiedergabe von Einschwingvorgängen aller Art.
+
Not only the extreme time offset of the drivers is of importance, but much more the dilemma of reproducing transients of all kinds.
Da es sich um einen 3-Wege-Lautsprecher handelt, betrifft dies nahezu den gesamten Übertragungsbereich. Der Energieaufbau bricht schon in der Anstiegsflanke zusammen und das Signal schwingt entgegengesetzt durch Nullstellen mit kleinen Amplituden hin und her.
+
Since this is a 3-way speaker, this affects almost the entire transmission range. The energy build-up already breaks down in the rising edge and the signal swings back and forth in the opposite direction through nulls with small amplitudes.
Nicht nur, dass das Signal vollig verformt wird, die in das System eingetragene Energie wird zeitverschoben mit geringen Maximalamplituden dargeboten. Würde man diese Sprungantwort mit einer idealen Sprungantwort bei gleichem Energieinhalt übereinander legen, so würde man auch den Unterschied der Maximalamplitudenwerte deutlich sehen.
+
Not only is the signal completely deformed, the energy introduced into the system is presented time-shifted with small maximum amplitudes. If one were to superimpose this step response with an ideal step response with the same energy content, one would also clearly see the difference in the maximum amplitude values.
  
Die nachfolgende Grafik stammt vom selben Lautsprecher und zeigt dessen Frequenzgang, der bis auf Unregelmäßigkeiten im Hochtonbereich mit einer extrem starken Membranresonanz oberhalb von 15 kHz eigentlich recht ausgewogen ist.  
+
The following graph is taken from the same loudspeaker and shows its frequency response that is actually quite balanced except for irregularities in the high frequency range with an extremely strong diaphragm resonance above 15 kHz.  
Im Frequenzgang, der beim Messvorgang aus einem quasi eingeschwungenen Zustand gemessen wird, sind die Probleme bei der Impulsdynamik und der Phase keineswegs zu erkennen.
+
In the frequency response, which is measured from a quasi steady state during the measurement process, the problems with the impulse dynamics and the phase are not noticeable at all.
  
 
|-
 
|-
 
|
 
|
[[Datei:616Marcofig2.jpg]]<br />
+
[[File:616Marcofig2.jpg]]<br />
''Quelle: www.stereophile.com''
+
''Source: www.stereophile.com''
 
|
 
|
'''Marten Coltrane 3'''<br />
+
'''Marten Coltrane 3''''<br />
Die Fehler in der Sprungantwort, gemessen unter einem extremen vertikalen Winkel, dürften sich auf Ohrhöhe in einiger Entfernung auflösen. Damit wäre dieser Lautsprecher als weitgehend zeitrichtig einzustufen, da die Hörer die richtigen Schallwellen am Ohr empfangen (Direktschall und horizontale Reflexionen). Da wir die Messung am Hörplatz allerdings nicht sehen können, kann man das nicht mit allerletzter Sicherheit bestätigen. Was bleibt, sind jedoch die Amplituden- und Zeitfehler durch die nicht korrigierten Resonanzen. Anhand der gezeigten Messergebnisse werden die vertikalen Reflexionen immer noch besser oder auf gleichem Niveau sein wie bei den meisten üblichen Konstruktionen (Koaxiallautsprecher eingeschlossen).
+
The errors in the step response, measured at an extreme vertical angle, should resolve at ear level at some distance. Thus, this loudspeaker would be classified as largely time correct, since the listeners receive the correct sound waves at the ear (direct sound and horizontal reflections). However, since we can't see the measurement at the listening position, this can't be confirmed with absolute certainty. What remains, however, are the amplitude and time errors due to the uncorrected resonances. Based on the measurement results shown, the vertical reflections will still be better or on the same level as with most common designs (coax drivers included).
 
|-
 
|-
 
|
 
|
[[Datei:V2efig3.jpg]]<br />
+
[[File:V2efig3.jpg]]<br />
[[Datei:V2efig4.jpg]]<br />
+
[[File:V2efig4.jpg]]<br />
''Quelle: www.stereophile.com''
+
''Source: www.stereophile.com''
 
|
 
|
 
'''Vandersteen'''<br />
 
'''Vandersteen'''<br />
Auch diese Sprungantwort zeigt Lautsprecher, die grundsätzlich auf die richtige Art und Weise einschwingen. Wenn man sich den Frequenzgang und die Sprungantwort  anschaust, sieht man, wie eindeutig der Frequenzgang in der Sprungantwort wiederzufinden ist. Und da zeigen sich natürlich auch alle Nichtlinearitäten.
+
This step response also shows speakers that basically transient in the right way. If you look at the frequency response and the step response, you can see how clearly the frequency response is reflected in the step response. And that's where all the non-linearities show up, of course.
  
Im Hochtonbereich sieht es unruhig aus und der kleine Katerbuckel in der Sprungantwort ist auf die Frequenzgangüberhöhung im Grundtonbereich zurückzuführen. <br />
+
In the high frequency range it looks unsteady and the small hangover in the step response is due to the frequency response exaggeration in the fundamental range. <br />
Und wie klingt so etwas?<br />
+
And how does something like that sound?<br />
In den Höhen etwas zischelig und die etwas lauten Grundtöne machen die Instrumente und Stimmen etwas dicker als sie sind. Aber ansonsten ist es umangestrengt, da die ständige Fehlerkorrektur im Gehirn im Millisekundentakt entfällt.  
+
A little sibilant in the highs, and the somewhat loud fundamentals make the instruments and voices sound a little thicker than they are. But other than that, it's strained around, because there's no need for the constant millisecond-by-millisecond error correction in the brain.  
 
|-
 
|-
 
|
 
|
[[Datei:Dalfig4.jpg]]<br />
+
[[File:Dalfig4.jpg]]<br />
''Quelle: www.stereophile.com''
+
''Source: www.stereophile.com''
 
|
 
|
'''Dunlavy Signature SC-VI'''<br />
+
'''Dunlavy Signature SC-VI''''<br />
  
Diese Sprungantwort kommt dem Ideal sehr nahe.
+
This step response is very close to the ideal.
 
|}
 
|}
  
Weitere Beispiele sind bei dem Magazin [https://www.fairaudio.de/lexikon/sprungantwort Fairaudio] beschrieben.  
+
The company [http://www.manger-msw.de Manger] shows the measurement of other loudspeakers of different manufacturers.
 +
 
 +
[[File:Aboutus acousticalreality image5.png]]
 +
 
  
Auch in dem folgenden Beispiel findet man dieselben Effekte sowohl im Zeitbereich (der Sprungantwort), als auch im Frequenzbereich (dem Frequenzband) anschaulich wieder: Der Hochtöner schwingt positiv ein und erzeugt die erste Spitze nach oben. Der Tieftöner ist verpolt angeschlossen und erzeugt die folgende Schwingung nach unten. Auf dieser Schwingung nach unten sieht man ein Zittern. Dies sind die unbedämpften Resonanzen des Hotöners, welche sich mit dem Tiefton überlagern. Im Frequenzgang sind diese [[Resonanzen]] als Anstieg ab ca. 15 kHz zu sehen. Auch der steile Abfall des Hochtöners hin zu 20 kHz spricht dafür, dass es sich um Resonanzen handelt, da ein kontrolliert schwingender Hochtöner keinen so starken Abfall hätte. Im [[Das Einschwingen|Einschwingen]] steht dieser Hochtonanteil damit nicht zur Verfügung.  
+
More examples are described at the magazine [https://www.fairaudio.de/lexikon/sprungantwort Fairaudio].  
  
 +
Also in the following example the same effects can be found vividly in the time domain (the step response) as well as in the frequency domain (the frequency response): The tweeter oscillates positively and produces the first peak upwards. The bass driver is connected in reverse polarity and produces the following downward oscillation. On this downward oscillation you can see a tremor. These are the undamped resonances of the tweeter, which overlap with the low frequency. In the frequency response these [[resonances]] can be seen as a rise starting at about 15 kHz. Also, the rapid drop of the tweeter towards 20 kHz indicates that these are resonances, since a controlled oscillating tweeter would not have such a strong drop. In [[The settling|settling]] this tweeter component is thus not available.
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|  
 
|  
[[Datei:36888-3e960238.jpg]]
+
[[File:36888-3e960238.jpg]]
 
|  
 
|  
[[Datei:36884-fb98b7bf.jpg]]
+
[[File:36884-fb98b7bf.jpg]]
 
|}
 
|}
  

Latest revision as of 13:11, 31 October 2020

Template:Delete candidate

The ideal course[edit]

The excitation of the loudspeaker is a square wave, i.e. the diaphragms are moved forward abruptly. This creates a pressure wave that propagates in the direction of motion. Since there is no further pressure after the forward movement of the diaphragms is complete, there is a pressure equalization in the air. This pressure equalization is manifested in the step response in the form of an elongated undershoot of the zero line. This restores the original static pressure of the environment. However, this pressure compensation by negative pressure can only contain the energy that was previously exerted on the air in the form of a pressure wave.
However, if we see a clear disproportion between pressure input above and pressure compensation below the zero line, there can be two possible explanations:

  • the moving mass (the tensioned spring) is very poorly damped

and / or the woofer doesn't swing forward at all, thus producing a negative pressure wave instead of a pressure wave The sound waves would thus be "in phase" with a phase difference of 180 degrees.

Picture2.jpgJump excitation Picture3.jpgResponse of the loudspeaker

The step signal has an infinitely steep rising edge and remains constant at the maximum value from this "switch-on" point on.

An ideal loudspeaker, which has the transmission behaviour of a bandpass with an upper and a lower cut-off frequency, transmits the step signal with a rising edge that is as steep as possible and a falling edge that is as slow and even as possible. The rise time is inversely proportional to the upper cutoff frequency, and the decay time is inversely proportional to the lower cutoff frequency.

Source: www.audio-intl.com

The step response looks ideally different than ideally related to a limited transmission range. It approaches more and more a square wave the more broadband and phase-locked a system is. You will always see the low pass at the beginning and the high pass at the end. Music doesn't produce square wave signals, but it does produce something similar, such as hand clapping or percussion instruments. The point is to check and recognize if a loudspeaker is able to follow the dynamic music signal or not. For this purpose, the first rectangle or the jump is of particular importance.

Small deviations from the ideal
When we look at a distorted step response, we know that the transfer response is not correct. When we look at a step response with approximately correct fundamental characteristics, it looks "right" at first. However, there are deviations which are not hidden in the up and down of the graph but are visible in the form of non-linearities in the course of the graph. Almost like we know it from reading frequency response curves and phase diagrams. We should not be deceived by the visual impression of the measurement curves. Similar looking step responses, for example, may therefore belong to very different sounding loudspeakers, because the seemingly small differences in the course of the graph may well indicate significant non-linearities. These non-linearities are of course also signal deformations, albeit of the lighter kind. Synchronizing the starting edges of different drivers in time is only the first elementary step towards proper conversion. But this does not mean that the frequency response linearity is good and the resonances are under control etc..

The ripples and deformations of step responses indicate lots of errors. They are deviations from the original and they are also audible and accordingly lead to justified criticism. In the frequency response small resonance points are often hardly visible or at least not assessable. Often they are below - 20 dB. In the step response they show themselves by a more or less strong deformation of the graph; sometimes it is only a small hump that appears on the otherwise quite ideal course of the graph. This tiny hump or spike can significantly distort the sound image and spatial imaging and interfere with the natural perception of sound. In noise you can hear phenomena < -30 dB with enough concentration. A phase shift or even inversion is always audible.
Frequency response non-linearities off-axis are of course always reflected in the graph of the step response, just as, for example, in the reproduction of a sine burst or in the reproduction of music. This is the case with every loudspeaker, but it is not so easy to read with highly distorted step responses. Only if you measure the transient response over the entire frequency range in detail, you can see how many octaves are affected by a seemingly "small" fidget at the beginning of the step response. The distortions already start in the midrange and affect the entire high frequency range.

The first example[edit]

We start with loudspeakers that have an easily interpretable step response. This serves as an introduction to the topic and makes it easier to understand. The choice of examples is for explanatory purposes and is otherwise arbitrary. (Source: www.stereophile.com)

The following four diagrams are from the same speaker: Vandersteen 2Ce Signature II. The first one shows the step response.

V2efig3.jpg
Diagram 1: Step response

V2efig3.jpg

Diagram 2: The proportions of the step response - mid-high section (red), woofer (blue)

The superposition, the interaction of red and blue, results in the sum of the step response of the whole system (Diagram 1). The measurement diagrams are to be evaluated under consideration of the small microphone distance. The summation at normal listening distances certainly looks better.
The step response starts with the rise time of the tweeter. The energy introduced into the diaphragm movement is converted into sound with a slight time delay, resulting in an exaggerated peak at 3.8 ms. This is typical and quite normal given the naturally limited bandwidth of the transducer. The up and down in the area of the peak corresponds to the frequency response of the tweeter from 8 kHz upwards. (see diagram 3: frequency response)
In the range of 4 - 5 ms there is a too strong sag, which we also see in the frequency response diagram as a slope from the highs to the mids. The hump at 5 ms points to a slight problem in the transition from mid to bass driver, a slight phase shift.

V2efig3.jpg

Diagram 3: Frequency Response

V2efig3.jpg

Diagram 4: Frequency response in space

With this type of construction (3-way LS with tweeter on top, midrange driver and woofer in this order below) the following characteristic results in combination with the phase linear transitions of the drivers: The vertical radiation pattern in the transition area between two drivers, e.g. midrange and bass, shows a dip in the frequency response when directed upwards, on the listening axis the frequency response is linear and directed downwards there is an exaggeration. The same happens between tweeter and midrange driver. The loudspeaker radiates louder downwards towards the floor than upwards towards the ceiling. The floor is usually the closest reflection surface. Therefore the frequency response increases as shown in Diagram 4. The only remedy is to use strongly sound-absorbing material, preferably exactly halfway from the loudspeaker to the listener.

Basically:

  • The tweeter determines the maximum slew rate of an impulse.
  • The synchronous transient of the tweeter with the midrange and woofer causes the full impulse dynamics. A bass drum, for example, sounds fast and crisp when all the loudspeaker drivers swing in synchronously, in phase.

Any step response that shows multiple oscillations is fundamentally wrong! This is a clear distinctive feature. It is more difficult to establish a quality standard within the group of loudspeakers that behave "ideally" in the above sense. Here, criteria such as

  • the transmission bandwidth

the dynamic range the "linearity" of the graph the radiation behaviour can be used. That is, the step response is examined for its bandwidth, measured at different levels, at different angles, and examined for its "linearity". By "linearity" is meant the uniformity of the graph with the ideal shape and the ripple apparent on it. So you can see under which conditions the "correct" step response is generated by the loudspeaker and under which conditions it is not. Thereupon the application area of the loudspeaker could be determined. Loudspeakers / transducers that are able to reproduce rectangles within a certain bandwidth have a slightly different characteristic of the step response, they form a plateau for a short time. Due to the differences between the first and subsequent half-waves, this is only possible in conjunction with a frequency response that rises towards low tones in the steady state.

Dalfig4.jpg
Vandersteen 2Ce Signature II

The second example[edit]

V2efig3.jpg Dalfig4.jpg

The graphs above show the step responses of a three-way semi-active loudspeaker:
Blue: mid-high
Red: active bass
Black: Sum signal

This step response is typical of many three-way speakers with steep-edged filters. Sometimes the mid/high range is in phase, sometimes, as in this case, in phase opposition to the bass driver. Quite clearly visible is the highly distorted transient and the time sequence of the sound components of the tweeter, midrange and bass drivers. The midrange-woofer transient, which is completely separated from the tweeter, and the bass transient, which is completely separated from the midrange-treble (red graph), show the missing reference, the tearing apart of the sound components. It is irrelevant how many milliseconds lie in between. What is decisive is the sound waveform of the superposition, the sound that characterizes the percussion.

Frequency response of the loudspeaker

V2efig3.jpg

Further examples[edit]

V2efig4.jpg
Source: www.stereophile.com

There are non-linearities in the transmission response of loudspeakers, which basically result from the limited transmission bandwidth. These limitations are also clearly seen in loudspeakers with largely correct step response. At the very beginning, where the signal starts, at about 3.7 ms the graph should go vertically upwards. But the tweeter has its limit in the rise time and the energy that should actually be generated at the beginning is slightly delayed. This leads to the first somewhat exaggerated peak at about 3.8 ms. So energy is radiated with a time delay and superimposed on the further course.
The low frequency limitation of the transmission behaviour is noticeable in a more or less strong drop of the curve. If the curve drops steeply from the peak, the woofer is only able to produce the first half wave in the bass range weakly. If the graph is flatter, this is more successful. To be able to judge this, the step responses have to be scaled equally on the time axis. All other nonlinearities visible in the course of the curve show frequency response errors with corresponding phase rotation.

Dalfig4.jpg
Source: www.stereophile.com

This step response shows the limits of the transmission range as well, just a little harder to see, as with all false step responses. The midrange driver here is polarized and the tweeter has a very poorly damped diaphragm resonance, which is visible in the negative pressure region in the form of the ringing on the curve. The non-linearity at 4.7 ms is either an error in the fundamental range or at a greater measuring distance already the first room reflection. One thing is also clear: no matter what signal is used to excite this loudspeaker, it will vibrate incorrectly, distorting the transient response.

Aboutus acousticalreality image5.png
707Focfig3.jpg
Source: www.stereophile.com

Focal Electra 1037 Be'

The following step response is exemplary of the state of loudspeaker technology. It is the step response of a 3-way loudspeaker. At about 3.75 ms the transient response of the tweeter starts. This is the first peak pointing downwards. The tweeter's polarity is reversed!

The second peak pointing upwards produces the completely uncompensated and also very poorly damped post oscillation of the tweeter. The following downward oscillation between 3.9 and 4.1 ms is the result of the total antiphase of tweeter and midrange driver. The midrange driver is the only non-polarized driver of this loudspeaker, whose transient shows its peak at about 4.3 ms. The strong dip from about 4.6 ms below the zero line, into the negative pressure region, is produced by the bass system. Here we also see an extreme phase jump.

Conclusion:
This loudspeaker resembles a roller coaster in terms of phase and time response. Not only the extreme time offset of the drivers is of importance, but much more the dilemma of reproducing transients of all kinds. Since this is a 3-way speaker, this affects almost the entire transmission range. The energy build-up already breaks down in the rising edge and the signal swings back and forth in the opposite direction through nulls with small amplitudes. Not only is the signal completely deformed, the energy introduced into the system is presented time-shifted with small maximum amplitudes. If one were to superimpose this step response with an ideal step response with the same energy content, one would also clearly see the difference in the maximum amplitude values.

The following graph is taken from the same loudspeaker and shows its frequency response that is actually quite balanced except for irregularities in the high frequency range with an extremely strong diaphragm resonance above 15 kHz. In the frequency response, which is measured from a quasi steady state during the measurement process, the problems with the impulse dynamics and the phase are not noticeable at all.

616Marcofig2.jpg
Source: www.stereophile.com

Marten Coltrane 3'
The errors in the step response, measured at an extreme vertical angle, should resolve at ear level at some distance. Thus, this loudspeaker would be classified as largely time correct, since the listeners receive the correct sound waves at the ear (direct sound and horizontal reflections). However, since we can't see the measurement at the listening position, this can't be confirmed with absolute certainty. What remains, however, are the amplitude and time errors due to the uncorrected resonances. Based on the measurement results shown, the vertical reflections will still be better or on the same level as with most common designs (coax drivers included).

V2efig3.jpg
V2efig4.jpg
Source: www.stereophile.com

Vandersteen
This step response also shows speakers that basically transient in the right way. If you look at the frequency response and the step response, you can see how clearly the frequency response is reflected in the step response. And that's where all the non-linearities show up, of course.

In the high frequency range it looks unsteady and the small hangover in the step response is due to the frequency response exaggeration in the fundamental range.
And how does something like that sound?
A little sibilant in the highs, and the somewhat loud fundamentals make the instruments and voices sound a little thicker than they are. But other than that, it's strained around, because there's no need for the constant millisecond-by-millisecond error correction in the brain.

Dalfig4.jpg
Source: www.stereophile.com

Dunlavy Signature SC-VI'

This step response is very close to the ideal.

The company Manger shows the measurement of other loudspeakers of different manufacturers.

Aboutus acousticalreality image5.png


More examples are described at the magazine Fairaudio.

Also in the following example the same effects can be found vividly in the time domain (the step response) as well as in the frequency domain (the frequency response): The tweeter oscillates positively and produces the first peak upwards. The bass driver is connected in reverse polarity and produces the following downward oscillation. On this downward oscillation you can see a tremor. These are the undamped resonances of the tweeter, which overlap with the low frequency. In the frequency response these resonances can be seen as a rise starting at about 15 kHz. Also, the rapid drop of the tweeter towards 20 kHz indicates that these are resonances, since a controlled oscillating tweeter would not have such a strong drop. In settling this tweeter component is thus not available.

36888-3e960238.jpg

36884-fb98b7bf.jpg


<zurück: Myroklopädie>
<zurück: Myro>