Difference between revisions of "What Are Time Correct Speakers?"

(Grundeigenschaften)
(Keine Beschreibung eines spezifischen Gerätes)
 
(19 intermediate revisions by 14 users not shown)
Line 1: Line 1:
 +
{{delete candidate}}
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|  
 
|  
== Grundeigenschaften ==
+
== Basic characteristics ==
 +
Dynamically time-aligned means that the loudspeaker with all drivers is in time or phase-aligned and radiates the transients (i.e. the reproduction and shaping of impulses) in their characteristics largely true to the original in the direction of the listener. Technically, this is referred to as a constant group delay of all frequencies over the entire transmission bandwidth, which - in the ideal case - also shows itself in a precise square wave reproduction.<br />
  
Die Grundvoraussetzung für die richtige Wandlung eines Lautsprechers ist das exakt gleichzeitige Eintreffen der Schallanteile der einzelnen Lautsprecherchassis und deren richtige Summenbildung. Nur wenn die Schallanteile aller Lautsprechersysteme zeitgleich, mit gleicher Polarität, mit dem richtigen Energiegehalt und dynamisch in Phase das Ohr des Zuhörers erreichen, ist die Reproduktion des gespeicherten "musikalischen Originals" erfolgreich.<br />
+
# Equal distances from the points of sound origin to the listener are the first basic prerequisite for correct conversion!<br />
Die Laufzeiten der Schallanteile von ihren Entstehungsorten (den akustischen Zentren der Lautsprecherchassis) zum Bezugspunkt (dem Ohr des Hörers) müssen dabei gleich sein. Dieser Bezugspunkt ergibt sich aus den für die jeweiligen Lautsprecher festgelegten Anwendungsbedingungen. Bei HiFi-Lautsprechern ist das in der Regel die Sitzposition des Hörers in einer Entfernung von mehreren Metern.<br />
+
The in-phase polarity is the second basic requirement!<br />
In der Praxis gibt es bei Lautsprechersystemen gewöhnlich bauformbedingt einen Tiefenversatz der akustischen Zentren. Bei Hochtönern befindet sich das akustische Zentrum relativ weit vorne, bei Tieftönern bis zu mehreren Zentimetern hinter der Vorderkante. Zur einfachen Orientierung kann man die Verbindungsstelle der Schwingspule mit der Membran als akustisches Zentrum annehmen. Die Steifigkeit des Schwingspulenträgers, der Membran und deren Geometrie (u.v.m.) spielen auch eine Rolle. (Bei der Accuton [[Cell-Serie]] sind die akustischen Zentren ausnahmsweise aufeinander abgestimmt.)
+
The third basic requirement for correct conversion is zero phase as the sum of the individual time / energy shifts!<br />
  
Würde man um das Ohr mit einem Zirkel einen Kreisbogen ziehen, müssten alle akustischen Zentren der Lautsprechersysteme auf dem Kreisbogen liegen, um exakt gleich weit vom Mittelpunkt (dem Ohr) entfernt zu sein. Dabei kommt es auf Millimeter an. Ist dies nicht der Fall, dann sind das gleichzeitige Eintreffen der Schallanteile und deren richtige Schallsummenbildung nicht möglich, der Lautsprecher verzerrt die Schallsignale und erzeugt künstliche Geräusche. Die originalgetreue Reproduktion findet nicht mehr statt.<br /> Dynamisch zeitrichtig bedeutet, dass der Lautsprecher mit allen Chassis zeit- bzw. phasengleich einschwingt und die Einschwingvorgänge (d.h. die Wiedergabe und Formung von Impulsen) in ihrer Charakteristik weitgehend originalgetreu in Richtung der Zuhörer abstrahlt. Technisch spricht man dabei von einer konstanten Gruppenlaufzeit aller Frequenzen über die gesamte Übertragungsbandbreite, welche sich in einer präzisen Rechteckwiedergabe zeigt.
+
In the context of analogue concepts, the following basic requirements must therefore be met for correct reproduction:
 +
# the simultaneous transient response of all drivers
 +
# a crossover circuit that allows for the correct summation
 +
# drivers that match each other, i.e. they must not sabotage the correct time sum by their own transmission behaviour in relation to that of the other drivers
  
| [[Datei:$_58.JPG]]<br />
+
Filter circuits exert their time-shifting, energy-delaying effect on the signal conversion from the starting point of the signal. This is amplified by the similar inherent behaviour of the loudspeaker chassis. Only if all conditions are fulfilled, a signal can be converted correctly.<br />
 +
Disadvantages arise when the above conditions are not met. For example, the simultaneous transient response of all drivers alone does not make a time correct concept, it is "only" a basic requirement. Also a step response, which only looks "nice", but which is not so on closer inspection, only pretends to be a correct transfer function.
 +
 
 +
Within a sound event, time correctness is not a property that is decoupled from sound pressure. It is fundamentally about the correct conversion of vibrations. Sound oscillations are density changes of air over time (with a temporal progression). So it's always about the right sound pressure at the right time - ''correct in time''. If the speaker is making mistakes, then it is not delivering the right pressure at the right time. So any discussion about whether you can do without ''time correctness'' to a greater or lesser extent makes no sense in principle. If you play a piece of music backwards, it has the same energy content and the same frequency response as if you played it the right way round - just in the wrong time sequence! And it sounds correspondingly wrong.
 +
The basic prerequisite for the correct conversion of a loudspeaker is the exactly simultaneous arrival of the sound components of the individual loudspeaker chassis and their correct summation. Only when the sound components of all loudspeaker systems reach the listener's ear at the same time, with the same polarity, with the correct energy content and dynamically in phase, is the reproduction of the stored "musical original" successful.<br />
 +
The travel times of the sound components from their points of origin ([[The acoustic centers of the drivers]]) to the reference point (the ear of the listener) must be the same. This reference point results from the application conditions specified for the respective loudspeakers. In the case of hi-fi loudspeakers, this is usually the listener's sitting position at a distance of several metres.<br />
 +
''[[File:$_58.JPG]]<br />
 
''[[Myro Grand Concert]]''
 
''[[Myro Grand Concert]]''
 +
|}
 +
 +
When loudspeakers excel in individual disciplines such as high-frequency resolution, stage imaging, or impulsivity, they usually lack the time-correct summation that produces the proper interplay, the proper fusion of the sound components of the individual drivers. Instead, the signals are broken down into artificial sound waves and individual components of them stand out. Particularly spiky distortion products suggest impulsiveness and high frequency resolution and time delays suggest a depth of space, which however can be debunked when listening closely, as the spatial action is not plausible. Such speakers usually sound spiky and hissy.<br />
 +
Loudspeakers with timing errors / distortions, whose artificial sound products are rather compressed-rounded, on the other hand, suggest homogeneity, which, however, is also not plausible on closer listening. Here, above all, less attention is demanded of the listener, which can create a relaxed feeling in some. Other listeners become restless because their high attention demands more intelligibility, more details, more real impulse dynamics. For these listeners it even becomes exhausting!<br />
 +
A synchronous bass response sounds different from that of the usual speakers. Due to the synchronous attack the bass does not stand out as a separate, trailing sound event from the music. Rather, it is one with the rhythm and dynamics of the music as a whole. For listeners with decades of experience this is at first strange, simply unfamiliar. The bass, although fully present, cannot be heard separately as usual and is therefore less noticeable (or prominent).<br />
 +
A synchronous mid-treble also sounds different than usual. Since the energy (amplitude) of the transients is not cancelled out by counter-phasing in the transient, the full natural impulse dynamics are delivered here. As a result, it sounds much fresher and more concise, but at the same time much smoother. And it's exactly this combination that contradicts the listening experiences made with false walking speakers. The faulty up and down, the multiple spiky pre-swing at faulty transient sound rather aggressive, rough, hissy, deaf.
 +
 +
{| class="wikitable" border="1"
 
|-
 
|-
|
+
|  
Lautsprecher, die lediglich auf einen ebenen Frequenzgang optimiert sind, weisen einen oder mehrere der folgenden Fehler auf:
+
Loudspeakers that are only optimized for a flat frequency response show one or more of the following faults:
  
*Inverses Einschwingen: Ein Chassis erzeugt eine Sog- statt einer Druckwelle, d.h. die Membran beginnt ihre Bewegung mit einer Auslenkung nach hinten anstatt nach vorn.
+
*Inverse transient: A driver produces a suction wave instead of a compression wave, i.e., the diaphragm begins its motion with a backward deflection instead of a forward deflection.
*Gegenphasiges Schwingen: Zwei Membranen (z.B. des Hoch- und Mitteltöners) bewegen sich stets in gegensätzliche Richtungen.  
+
*Oppophase oscillation: Two diaphragms (e.g. of the tweeter and midrange driver) always move in opposite directions.  
*nicht-konstante Gruppenlaufzeit durch steile Filterflanken: Die einzelnen Frequenzen eines Signals werden mit jeweils individueller Geschwindigkeit zum Hörer transportiert. Impulse werden dadurch zeitlich verschliffen und in ihrer Amplitude verfälscht.
+
Non-constant group delay due to steep filter edges: The individual frequencies of a signal are transported to the listener at individual speeds. Impulses are thereby temporally ground and distorted in their amplitude.
*Positionierung der Chassis: Die Anordnung der Chassis im Gehäuse mit ihren akustischen Zentren lässt keine korrekte Summenbildung der Schallanteile zu.
+
*Positioning of the drivers: The arrangement of the drivers in the cabinet with their acoustic centers does not allow a correct summation of the sound components.
  
'''Lautsprecher mit völlig asynchroner, gegenphasiger Schallsummenbildung erzeugen bei keiner Entfernung und unter keinem Winkel eine richtige Sprungantwort.'''
+
'''Loudspeakers with completely asynchronous, antiphase sound summation do not produce a correct step response at any distance or angle.'''
  
Weitere technische Beschreibungen enthält das folgende Dokument.
+
For more technical descriptions, see the following document.
 
<gallery>
 
<gallery>
Datei:Zeitrichtig.pdf|Zeitrichtig, was ist das?
+
File:Time correct.pdf|Time correct, what is it?
 +
File:Hifi &amp; Records 4 2015.pdf|Correct impulse response, from:        Hifi &amp; Records 4/2015
 
</gallery>
 
</gallery>
 +
 +
=== Development sequences ===
 +
 +
The development of time-correct loudspeakers is divided into four stages:
 +
 +
''In the first stage'' of development, simulations, amplitude and phase-frequency response measurements are used to obtain crossover circuits that move towards phase-linear transitions.<br />
 +
 +
''In the second stage'' of development, a look at the step response reveals the first correlations and the circuit concept in its final form emerges.<br />
 +
 +
''In the third stage'' of development, the step response becomes the ultimate measurement. This is about the linearization of the step response, which automatically leads to the linearization of amplitude and phase / group delay frequency responses etc. and this in an accuracy, which can hardly be achieved by other measurements.<br />
 +
 +
''In the fourth stage'' the ear comes into play. With pink noise, the developer can hear and evaluate differences that are no longer apparent, visually recognizable, or interpretable based on measurements. With music the impressions can be deepened.
 
|
 
|
 
<gallery>
 
<gallery>
Datei:Rechteck 1 kHz 70.jpg|Beispiel: Rechteckwiedergabe der [[Myro Amur D]]
+
File:Rectangle 1 kHz 70.jpg|Example: Rectangle reproduction of the [[Myro Amur D]]</gallery>  
</gallery>  
+
  
Die in den Aufnahmen enthaltenen Zeitbezüge, die entsprechende räumliche Ortung von Schallquellen und die Impulsdynamik werden damit in ihrer vollen Intensität wiedergegeben.  
+
The time references contained in the recordings, the corresponding spatial location of sound sources and the impulse dynamics are thus reproduced in their full intensity.  
  
 
<gallery>
 
<gallery>
Datei:11050773 943753218990066 8703926398075487757 n.jpg|Korrekte Bildung einer Schallsumme
+
File:11050773 943753218990066 8703926398075487757 n.jpg|Correct formation of a sound sum
Datei:30409099.jpg|Beispiel: Sprungantwort der [[Myro Amur C]]
+
File:30409099.jpg|Example: step response of the [[Myro Amur C]]
 
</gallery>
 
</gallery>
 
 
|}
 
|}
  
Line 45: Line 76:
 
|  
 
|  
  
[[Datei:Tigris.jpg]]<br />
+
[[File:Tigris.jpg]]<br />
 
''[[Myro Tigris]]''
 
''[[Myro Tigris]]''
 
|
 
|
  
== Der Obstbaum ==
+
== The fruit tree ==
Das Thema der Messwerte und deren korrekter Interpretation ist nicht leicht zu verstehen. Als Hilfestellung kann man sich die Art der Messwerte und deren Aussage anhand eines Obstbaums veranschaulichen.
+
The subject of readings and their correct interpretation is not easy to understand. As an aid, the nature of the readings and what they mean can be illustrated using a fruit tree.<br />
 
+
Measurements that do not show the signal structure, that is, the actual sound information, only indicate,
 
+
*how many fruits are on the tree,
Messungen, die nicht die Signalstruktur, also die tatsächliche Klanginformation zeigen, geben nur Hinweise darauf,
+
*how big they are
 
+
*and how many fruits are hanging from which branch.<br />
*wie viele Früchte auf dem Baum sind,
 
*wie groß sie sind
 
*und wie viele Früchte an welchem Ast hängen.<br />
 
 
 
 
 
Messungen, welche die Signalstruktur aufzeigen, geben weiterhin Hinweise darauf,
 
 
 
*ob Äpfel, Birnen, Zitronen oder Mangos an dem Baum hängen
 
*und ob sie verfault, angefressen oder prall und reif sind. <br />
 
 
 
Auch diese Informationen sind von wichtiger Bedeutung, denn:<br />
 
'''Wenn die Früchte faul sind, ist es egal, wie viele es sind, wie groß sie sind und auf welchem Ast sie hängen!'''<br /><br />
 
 
 
Will man auch noch wissen, wie die Früchte schmecken, sollte man hineinbeißen.<br />
 
  
Daraus folgt:<br />
 
  
 +
Measurements that reveal the signal structure further indicate,
 +
*whether apples, pears, lemons or mangoes are hanging on the tree.
 +
*and whether they are rotten, pitted or plump and ripe. <br />
  
''Frequenzgang:''
+
This information is also of vital importance, for:<br />
 +
'''If the fruit is rotten, it doesn't matter how many there are, how big they are, or what branch they are hanging on!'''<br /><br />
  
*Größe und Anzahl der Früchte...<br />
+
If one also wants to know how the fruit tastes, one should bite into it. It follows:<br />
  
 +
''Frequency response:''
 +
*Size and number of fruits...<br />
  
  
''Abstrahlverhalten:''
+
''Radiation pattern:''
*... wo sie hängen...<br />
+
*... where they hang...<br />
  
  
''Sprungantwort / Messungen mit diversen Signalformen oder mit Musikpassagen:''
+
''Step response / measurements with various waveforms or with musical passages:''
 +
*whether apples, pears, lemons or mangoes are hanging on the tree.
 +
*and whether they are rotten, pitted or plump and ripe.<br />
  
*ob Äpfel, Birnen, Zitronen oder Mangos an dem Baum hängen
 
*und ob sie verfault, angefressen oder prall und reif sind.<br />
 
  
 
+
''Listen:''
''Hören:''
+
*What do the fruits taste like?<br />
 
 
*Wie schmecken die Früchte?<br />
 
 
<br />
 
<br />
 
|}
 
|}
Line 97: Line 117:
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
|  
+
|
== Zeitrichtigkeit - eine Frage der Definition ==
+
 
Der Begriff "zeitrichtige Lautsprecher" ist eigentlich ein reines Schlagwort. Er ist in Gänze in seinem Anspruch, das Zeitverhalten als richtig zu benennen, nicht ohne weiteres definierbar. Der Grund dafür ist, dass die Zeitbeziehungen im Einschwingvorgang sich erheblich von den Zeitbeziehungen im eingeschwungenen Zustand unterscheiden. <br />
+
== Time correctness - a question of definition ==
Bei der Definition von Zeitrichtigkeit gibt es zwei mögliche Ansätze:<br />
+
The term "time-correct speakers" is actually a pure buzzword. It is not easily definable in its claim to designate the time behaviour as correct. The reason for this is that the time relations in the transient process differ considerably from the time relations in the steady state. <br />
 +
There are two possible approaches to defining time correctness:<br />
  
1. Der '''Idealfall''' ist der 1:1 wandelnde elektroakustische Wandler. Dessen Bandbreite wäre theoretisch unbegrenzt und die Sprungantwort wäre ein sauberes Rechteck. <br />
+
1. the '''ideal case''' is the 1:1 transducing electroacoustic transducer. Its bandwidth would be theoretically unlimited and the step response would be a clean square wave. <br />
  
2. In der Praxis gibt es nur '''Normalfälle''', deren Bandbreiten begrenzt sind.<br />
+
2. in practice there are only '''normal cases''' whose bandwidths are limited.<br />
  
Würde man den theoretischen Idealfall zugrunde legen, wäre kein reales Produkt zeitrichtig, phasenlinear, gruppenlaufzeitlinear, frequenzganglinear, signalrichtig usw. Die Begriffe wären nicht anwendbar. Daraus folgt: Die Definition der Begriffe muss sich an den realen Umständen orientieren. Hierbei gibt es wieder zwei Möglichkeiten:<br />
+
If the theoretical ideal case were taken as a basis, no real product would be time-correct, phase-linear, group delay-linear, frequency response-linear, signal-correct, etc. The terms would not be applicable. It follows: The definition of the terms must be based on real circumstances. Here again there are two possibilities:<br />
  
'''Erstens:''' Man orientiert sich an der Hörbandbreite des menschlichen Gehörs. Grundlage dafür kann nur das gesunde, junge Gehör sein. Dessen Bandbreite beträgt nach konservativen Messmethoden (Dauerton-Intensität) je nach Quelle 20 - 20.000 Hz oder 16 - 24.000 Hz. Bei Messungen dynamischer Vorgänge ergeben sich Werte bis zu 100.000 Hz.<br />
+
'''First:''' One orients oneself to the auditory bandwidth of the human ear. The basis for this can only be the healthy, young hearing. According to conservative measurement methods (continuous tone intensity), its bandwidth is 20 - 20,000 Hz or 16 - 24,000 Hz, depending on the source. Measurements of dynamic processes result in values of up to 100,000 Hz.<br />
Die untere Bandbreitenbegrenzung bei 16 oder 20 Hz müsste dabei ohne Zeit- und Amplitudenfehler wiedergegeben werden, da der Hörsinn diese Fehler erkennen würde. Bei der oberen Bandbreitenbegrenzung ist man zudem in der Realität einer starken Richtwirkung des Schalls ausgesetzt und müsste sich auf eine Abstrahlrichtung oder eine Summen-Energiekurve einigen. Auch hier müssten Zeitverhalten und Amplitude linear sein. Beide Bandbreiten-Grenzen unterliegen physikalischen Gesetzen, die reale Lautsprecher nicht erfüllen können. Der menschliche Hörsinn ist ein zu strenger Maßstab für eine Begriffs-Definition. Kein Lautsprecher würde ihn erfüllen und wir hätten somit die gleiche Problematik wie beim "Idealfall" zu Anfang.<br />
+
The lower bandwidth limit at 16 or 20 Hz would have to be reproduced without time and amplitude errors, since the auditory sense would detect these errors. In the case of the upper bandwidth limit, one is also exposed to a strong directional effect of the sound in reality and would have to agree on a radiation direction or a sum energy curve. Again, the time response and amplitude would have to be linear. Both bandwidth limits are subject to physical laws that real loudspeakers cannot satisfy. The human sense of hearing is too strict a standard for a definition of terms. No loudspeaker would meet it and we would have the same problem as with the "ideal case" at the beginning.<br />
  
'''Zweitens:''' Lautsprecher werden in einer Vielzahl praxisgerechter Größen angeboten, deren Übertragungsbandbreiten physikalisch bedingt unterschiedlich ausfallen. Demzufolge ist es eine Möglichkeit, die Bandbreitenbegrenzung grundsätzlich als Fakt zu akzeptieren und das Hauptaugenmerk auf den Bereich zwischen den Übertragungsenden zu legen. Hier liegen die für die Wiedergabequalität maßgeblichen Übergangsbereiche zwischen den Chassis bei Mehrwege-Lautsprechern, und bei einem Ein-Wege-Lautsprecher sind vor allem die Resonanzen der Membran das Problem. Dieser Bereich ist zudem der Bereich der höchsten Wahrnehmungsempfindlichkeit.<br />
+
'''Secondly:''' Loudspeakers are offered in a variety of practical sizes, the transmission bandwidths of which vary due to physics. Consequently, one possibility is to accept the bandwidth limitation as a fact in principle and to put the main focus on the area between the transmission ends. This is where the transition areas between the drivers, which are decisive for the reproduction quality, are located in the case of multi-way loudspeakers, and in the case of a one-way loudspeaker the resonances of the diaphragm are the main problem. This area is also the area of highest perceptual sensitivity.<br />
  
Zeitrichtigkeit (Gruppenlaufzeit, Phasenfrequenzgang) ist ebenso wie der Amplitudenfrequenzgang ''kein'' hörbares Ereignis. Sie sind isolierte theoretische Parameter. Man kann Zeitrichtigkeit nicht hören, sondern nur Signalformen. Daher sollte nicht Zeitrichtigkeit allein definiert werden, sondern sinnvollerweise die "Signalrichtigkeit". Hörbar sind allein die Schallschwingungen, also der Schalldruckverlauf über die Zeit. Anhand der Schwingungsformen (Signalformen) unterscheidet unser Hörsinn die Schallereignisse. Dies ist bereits bei einer extrem kurzen Schwingung, wie z.B. einer Sinushalbwelle, möglich. Manche Schallereignisse, wie z.B. Händeklatschen, bestehen zum Teil nur aus ein bis zwei Schwingungen. Sie sind voneinander unterscheidbar. Sie haben in ihrer Signalstruktur keinen eingeschwungenen Zustand.
+
Time correctness (group delay, phase frequency response), like amplitude frequency response, is ''not'' an audible event. They are isolated theoretical parameters. One cannot hear time correctness, only waveforms. Therefore, time correctness alone should not be defined, but more meaningfully ''signal correctness''. Only the sound vibrations, i.e. the sound pressure curve over time, are audible. Our sense of hearing distinguishes between sound events on the basis of the forms of oscillation (signal forms). This is already possible with an extremely short oscillation, such as a sine half-wave. Some sound events, such as hand claps, consist in part of only one or two oscillations. They can be distinguished from each other. They do not have a steady state in their signal structure.
Die Empfehlung zum Thema Zeitrichtigkeit lautet daher: Zeitrichtigkeit sollte nicht isoliert betrachtet werden, da kein hörbares Ereignis. Verwendung finden sollte der Begriff ''Signalrichtigkeit''.
+
The recommendation on the subject of time correctness is therefore: Time correctness should not be considered in isolation, since it is not an audible event. The term ''signal correctness'' should be used.
| [[Datei:Time_black.jpg]]<br />
+
''[[File:Time_black.jpg]]<br />
''[[Myro Time 1]]''
+
''[[Myro Time 1]]'''
 
|}
 
|}
  
==== Warum klingen nicht alle "richtig wandelnden" Lautsprecher gleich? ====
+
=== Why don't all ''right walking'' speakers sound the same? ===
Mit "richtig wandeln" ist zunächst die Fähigkeit gemeint, Signale in ihrer Form möglichst beizubehalten. Anders als die Lautsprecher mit grundsätzlich verzerrtem Einschwingen, erzeugen signal- / zeitrichtige Lautsprecher prinzipiell Signalantworten, die in ihrer Form dem Eingangssignal gleichen. Dies gelingt natürlich nur im Rahmen der physikalisch bedingt begrenzten Bandbreite des Übertragungsbereichs. Hierin findet sich der erste Unterschied zwischen prinzipiell "richtig wandelnden" Lautsprechern, ebenso wie in der Charakteristik des Hoch- und des Tiefpasses des jeweiligen Lautsprechers.<br />
+
First of all, by "properly transducing" is meant the ability to maintain signals in their form as much as possible. Unlike loudspeakers with basically distorted transient response, signal / time correct loudspeakers in principle produce signal responses that are similar in shape to the input signal. Of course, this is only possible within the physically limited bandwidth of the transmission range. This is where the first difference between loudspeakers that convert correctly in principle can be found, as well as in the characteristics of the high and low pass of the respective loudspeaker.<br />
In den Grenzbereichen des Übertragungsbereichs kommt es zu Abweichungen der vom Lautsprecher erzeugten Signalform vom Eingangssignal. Zudem unterscheiden sich die Lautsprecher in der Anstiegsgeschwindigkeit, im Ausschwingen und in leichten Verformungen bzw. Überlagerungen der Signale, z.B. durch Nichtlinearitäten im Amplitudenverlauf, der Linearität der Bewegung der Membranen und durch deren Partialschwingungen und Resonanzen. Das Abstrahlverhalten und der Maximalschalldruck sind ebenfalls Unterscheidungsmerkmale.
+
In the border areas of the transmission range there are deviations of the signal form produced by the loudspeaker from the input signal. In addition, the loudspeakers differ in the slew rate, in the decay and in slight deformations or superpositions of the signals, e.g. by non-linearities in the amplitude course, the linearity of the movement of the membranes and by their partial oscillations and resonances. The radiation behaviour and the maximum sound pressure are also distinguishing features.<br />
  
Das Konzept, welches hinter einer Lautsprecherentwicklung steht, bestimmt letztendlich das Ergebnis. Es sind insbesondere Aspekte, die als Vorgaben / Einschränkungen seitens der potenziellen Käufer in eine Konstruktion eingehen, wie z.B. die Größe, Form, Preislage, das Design, Klangpräferenzen usw. Die Erkenntnis aus jahrzehntelanger Lautsprecherentwicklung ist, dass ein nach allen Regeln der Kunst konstruierter Lautsprecher nahezu unverkäuflich wäre. Preis, Marke und Design sind die vorrangigen Entscheidungskriterien der "normalen" Kundschaft. Für Massenhersteller verbieten sich daher viele technische Lösungen, da sie schlichtweg nicht akzeptiert werden. Eine Manufaktur wie [[Myro]], die auch Einzelstücke fertigt, kann hingegen auf individuelle Wünsche eingehen, die in der Serienfertigung ausgeschlossen sind.  
+
==== The limits of correct low frequency reproduction ====
 +
The problem of correct low frequency reproduction basically lies in the physical limits. Low frequencies are slow oscillations. A woofer has to generate pressure with a sound wave moving away with approx. 340 m/s. The diaphragm is in relation to the wave. Thereby the membrane is small in relation to the wavelength. This requires an extremely wide excursion to faithfully reproduce the first half-wave, such as the beat of a bass drum. Even the excursion of long excursion drivers is completely insufficient for this. To bring a bass closer to the ideal by using more excursion has several disadvantages:
 +
*Doppler distortion / acoustic centers jumping back and forth.
 +
*Distortions due to non-linearities of the system
 +
*Electrical stress / heating of the voice coils
 +
*thereby high impedance and loss of dynamics
 +
On the other hand, an increase of the membrane area together with the corresponding enclosures is a measure in the sense of the cause, but the possibilities and the acceptance of the users are the measure of all things here. The "right conversion" should therefore always be related to the transmission bandwidth of a certain loudspeaker size. There is no other way, because each loudspeaker represents a size limitation.
 +
 
 +
==== Subwoofer ====
 +
Subwoofers are usually limited with higher order filters, which causes a timing error. The basic idea of limiting subwoofers low and steeply sloping, because low tones are difficult to locate, is counteracted by the timing errors that occur. A subwoofer that is coupled with the correct impulse needs flat filters like all other loudspeakers and thus plays into the midrange. <br />
 +
Another reason for bad timing is due to different travel times from the subwoofer and the main speakers to the listening position(s), which can only be compensated to a limited extent by electronic time delays. Bass impulses are locatable. And if they do not resonate at the same time and in phase with the overall signal, subwoofers are locatable. Rhythm errors regularly occur when subwoofers are used. Therefore, the recommendation is to do without them if possible.
 +
 
 +
==== Conclusion ====
 +
The concept behind a loudspeaker design ultimately determines the result. There is a multitude of applications and user requirements that have to be taken into account when planning a model. In particular, there are aspects that enter into a design as specifications / restrictions on the part of potential buyers, such as the size, shape, price range, design, sound preferences, etc.. The insight from decades of loudspeaker development is that a loudspeaker designed according to all rules of the art would be almost unsaleable. Price, brand and design are the primary decision criteria of the "normal" customer. For mass manufacturers, many technical solutions are therefore out of the question, as they are simply not accepted. A manufacture like [[Myro]], on the other hand, which also produces individual pieces, can respond to individual wishes that are excluded in mass production.  
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
Line 129: Line 163:
 
|
 
|
  
== Begriffe zur Klangbeschreibung ==
+
== Terms for describing sound ==
Die klangliche Natur signal- / zeitgenauer Schallwandler kann man unter dem Begriff Realitätsanmutung zusammenfassen.
+
The sonic nature of signal / time accurate sound transducers can be summarized under the term reality impression.
Differenziert sind die folgenden Aspekte hervorzuheben:
+
Differentiated the following aspects are to be emphasized:
 
 
*Impulsdynamik
 
*Impulsklangfarbe
 
*Räumlichkeit
 
*Zeitbeziehungen von Grund- zu Obertönen
 
*Atmosphäre
 
  
Das Vokabular für Klangbeschreibungen ist im Bereich konventioneller Lautsprecherbeschreibungen weitgehend ausgeschöpft.
+
*Pulse dynamics
So wird versucht, die Aspekte durch Analogien und Beispiele näher zu beschreiben.<br />
+
*pulse timbre
 +
*spatiality
 +
*Time relations of fundamental to overtones
 +
*atmosphere
  
'''Impulsdynamik'''<br />
+
The vocabulary for sound descriptions is largely exhausted in the field of conventional loudspeaker descriptions.
 +
Thus, an attempt is made to describe the aspects in more detail by analogies and examples.<br />
  
Hiermit ist nicht gemeint, wie laut es knallt, wenn der Drummer sein Schlagzeug anschlägt. Vielmehr hört man die Impulsdynamik in der Eindeutigkeit des Anschlags, in der blitzartigen Intensität. Der Anschlag stottert nicht, verhaspelt sich nicht.<br />
+
'''Impulse Dynamics'''<br />
  
'''Impulsklangfarbe'''<br />
+
This does not refer to how loud it pops when the drummer hits his drums. Rather, you hear the impulse dynamics in the clarity of the attack, in the lightning-like intensity. The attack doesn't stutter, doesn't get muddled.<br />
  
Bei alten Klavieren hat man oft das Problem der abgenutzten Mechanik. Ein abgenutzter Hammerfilz beispielsweise lässt den Anschlag der ansonsten intakten Klaviersaiten verstimmt klingen. Dem sehr ähnlich klingen Klaviersaitenanschläge bei Lautsprechern mit verzerrter Transientenwiedergabe.<br />
+
'''Impulse timbre'''<br />
  
'''Räumlichkeit'''<br />
+
With old pianos, you often have the problem of worn action. A worn hammer felt, for example, will make the attack of otherwise intact piano strings sound out of tune. Very similar to this, piano string strokes sound distorted in speakers with distorted transient reproduction.<br />
  
Bei nicht signal- / zeitrichtigen Lautsprechern wirkt der Raumeindruck wie ein Blick durch ein mehr oder weniger großes, unterschiedlich geformtes Fenster, mit mehr oder weniger klarem Fensterglas. Bei einem signal- / zeitrichtigen Lautsprecher wirkt es so, als befände sich alles, auch man selbst, draußen im Freien. Dieser Eindruck kann durch Phasen- / Zeitfehler innerhalb der Aufnahme und innerhalb der restlichen Wiedergabekette oder durch sehr starke frühe Reflexionen beeinträchtigt werden. Der Lautsprecher selbst erzeugt nicht den Eindruck einer räumlichen Begrenztheit.<br />
+
'''Spatiality'''<br />
  
'''Zeitbeziehungen von Grund- zu Obertönen'''<br />
+
With speakers that are not signal / time correct, the impression of space is like looking through a more or less large, differently shaped window, with more or less clear window glass. With a signal / time correct loudspeaker it seems as if everything, including oneself, is outside in the open air. This impression can be affected by phase / time errors within the recording and within the rest of the playback chain, or by very strong early reflections. The loudspeaker itself does not create the impression of spatial boundedness.<br />
  
Wenn uns ein Barkeeper einen Cocktail mischt und alle Aromen und Geschmacksrichtungen zu einem leckeren Ganzen vereint, wir uns diesem Cocktail jedoch erst nach einem einstündigen Thekengespräch zuwenden, dann haben sich die unterschiedlichen Bestandteile teilweise wieder getrennt, abgesetzt. Wir schmecken dann beispielsweise beim ersten Schluck eine saure Note, gefolgt von etwas Bitterkeit und einem klebrig süßen Bodensatz.<br />
+
'''Time relations of fundamental to harmonics'''<br />
  
'''Atmosphäre'''<br />
+
If a bartender mixes us a cocktail and combines all the aromas and flavors into a delicious whole, but we turn to this cocktail only after an hour-long bar conversation, then the different components have partially separated again, settled. We taste then for example at the first sip a sour note, followed by some bitterness and a sticky sweet sediment.<br />
  
Als Beispiel dient die Bearbeitung einer Aufnahme in einer Kirche, 16 Bit / 44,1 kHz Ausgabeformat. Dabei war ein Grundstörpegel auszumachen, dessen Ursache nicht eindeutig definierbar war, irgendwie störend, und es schob sich zwischen die Töne. Insgesamt war eine Mixtur aus Schärfe und Verklemmtheit im Klang. Die Konsequenz war der Einsatz eines Rauschfilters und schon war die Aufnahme rauschfrei und glatt. Die Ursache war jedoch eine mangelnde Auflösung der subtilen Schallanteile, eine mangelde Feindynamik, gestörte Zeitbeziehungen.<br />
+
'''Atmosphere'''<br />
Bei Änderung des Ausgabeformats auf 24 Bit und 32 Bit und Erhöhung der Abtastfrequenz wurde mit jedem Schritt ein Schleier nach dem anderen weggezogen und die Obertöne der Instrumente verloren an Schärfe und gewannen an Klarheit und Natürlichkeit.
 
Das Rauschen entpuppte sich als eine unter die Haut gehende Atmosphäre durch die diffiziele Raumakustik des Kirchenraumes.
 
  
 +
As an example, the processing of a recording in a church, 16 bit / 44.1 kHz output format. There was a basic noise level to be discerned, the cause of which was not clearly definable, somehow disturbing, and it pushed itself between the tones. Overall, there was a mixture of sharpness and jamminess in the sound. The consequence was the use of a noise filter and the recording was smooth and free of noise. The cause, however, was a lack of resolution of the subtle sound components, a lack of fine dynamics, disturbed time relationships.<br />
 +
When the output format was changed to 24 bit and 32 bit and the sampling frequency was increased, one veil after the other was removed with each step and the overtones of the instruments lost sharpness and gained clarity and naturalness.
 +
The noise turned out to be an ambience that got under the skin due to the difficile acoustics of the church room.
 
|  
 
|  
[[Datei:Time u MagicMusica 800hoch.jpg]]<br />
+
[[File:Time u MagicMusica 800hoch.jpg]]<br />
''[[Myro Time 2]] und [[Myro Magic Musica]]''
+
''[[Myro Time 2]] and [[Myro Magic Musica]]''
 
|}
 
|}
  

Latest revision as of 12:01, 31 October 2020

Template:Delete candidate

Basic characteristics[edit]

Dynamically time-aligned means that the loudspeaker with all drivers is in time or phase-aligned and radiates the transients (i.e. the reproduction and shaping of impulses) in their characteristics largely true to the original in the direction of the listener. Technically, this is referred to as a constant group delay of all frequencies over the entire transmission bandwidth, which - in the ideal case - also shows itself in a precise square wave reproduction.

  1. Equal distances from the points of sound origin to the listener are the first basic prerequisite for correct conversion!

The in-phase polarity is the second basic requirement!
The third basic requirement for correct conversion is zero phase as the sum of the individual time / energy shifts!

In the context of analogue concepts, the following basic requirements must therefore be met for correct reproduction:

  1. the simultaneous transient response of all drivers
  2. a crossover circuit that allows for the correct summation
  3. drivers that match each other, i.e. they must not sabotage the correct time sum by their own transmission behaviour in relation to that of the other drivers

Filter circuits exert their time-shifting, energy-delaying effect on the signal conversion from the starting point of the signal. This is amplified by the similar inherent behaviour of the loudspeaker chassis. Only if all conditions are fulfilled, a signal can be converted correctly.
Disadvantages arise when the above conditions are not met. For example, the simultaneous transient response of all drivers alone does not make a time correct concept, it is "only" a basic requirement. Also a step response, which only looks "nice", but which is not so on closer inspection, only pretends to be a correct transfer function.

Within a sound event, time correctness is not a property that is decoupled from sound pressure. It is fundamentally about the correct conversion of vibrations. Sound oscillations are density changes of air over time (with a temporal progression). So it's always about the right sound pressure at the right time - correct in time. If the speaker is making mistakes, then it is not delivering the right pressure at the right time. So any discussion about whether you can do without time correctness to a greater or lesser extent makes no sense in principle. If you play a piece of music backwards, it has the same energy content and the same frequency response as if you played it the right way round - just in the wrong time sequence! And it sounds correspondingly wrong. The basic prerequisite for the correct conversion of a loudspeaker is the exactly simultaneous arrival of the sound components of the individual loudspeaker chassis and their correct summation. Only when the sound components of all loudspeaker systems reach the listener's ear at the same time, with the same polarity, with the correct energy content and dynamically in phase, is the reproduction of the stored "musical original" successful.
The travel times of the sound components from their points of origin (The acoustic centers of the drivers) to the reference point (the ear of the listener) must be the same. This reference point results from the application conditions specified for the respective loudspeakers. In the case of hi-fi loudspeakers, this is usually the listener's sitting position at a distance of several metres.
$ 58.JPG
Myro Grand Concert

When loudspeakers excel in individual disciplines such as high-frequency resolution, stage imaging, or impulsivity, they usually lack the time-correct summation that produces the proper interplay, the proper fusion of the sound components of the individual drivers. Instead, the signals are broken down into artificial sound waves and individual components of them stand out. Particularly spiky distortion products suggest impulsiveness and high frequency resolution and time delays suggest a depth of space, which however can be debunked when listening closely, as the spatial action is not plausible. Such speakers usually sound spiky and hissy.
Loudspeakers with timing errors / distortions, whose artificial sound products are rather compressed-rounded, on the other hand, suggest homogeneity, which, however, is also not plausible on closer listening. Here, above all, less attention is demanded of the listener, which can create a relaxed feeling in some. Other listeners become restless because their high attention demands more intelligibility, more details, more real impulse dynamics. For these listeners it even becomes exhausting!
A synchronous bass response sounds different from that of the usual speakers. Due to the synchronous attack the bass does not stand out as a separate, trailing sound event from the music. Rather, it is one with the rhythm and dynamics of the music as a whole. For listeners with decades of experience this is at first strange, simply unfamiliar. The bass, although fully present, cannot be heard separately as usual and is therefore less noticeable (or prominent).
A synchronous mid-treble also sounds different than usual. Since the energy (amplitude) of the transients is not cancelled out by counter-phasing in the transient, the full natural impulse dynamics are delivered here. As a result, it sounds much fresher and more concise, but at the same time much smoother. And it's exactly this combination that contradicts the listening experiences made with false walking speakers. The faulty up and down, the multiple spiky pre-swing at faulty transient sound rather aggressive, rough, hissy, deaf.

Loudspeakers that are only optimized for a flat frequency response show one or more of the following faults:

  • Inverse transient: A driver produces a suction wave instead of a compression wave, i.e., the diaphragm begins its motion with a backward deflection instead of a forward deflection.
  • Oppophase oscillation: Two diaphragms (e.g. of the tweeter and midrange driver) always move in opposite directions.

Non-constant group delay due to steep filter edges: The individual frequencies of a signal are transported to the listener at individual speeds. Impulses are thereby temporally ground and distorted in their amplitude.

  • Positioning of the drivers: The arrangement of the drivers in the cabinet with their acoustic centers does not allow a correct summation of the sound components.

Loudspeakers with completely asynchronous, antiphase sound summation do not produce a correct step response at any distance or angle.

For more technical descriptions, see the following document.

Development sequences[edit]

The development of time-correct loudspeakers is divided into four stages:

In the first stage of development, simulations, amplitude and phase-frequency response measurements are used to obtain crossover circuits that move towards phase-linear transitions.

In the second stage of development, a look at the step response reveals the first correlations and the circuit concept in its final form emerges.

In the third stage of development, the step response becomes the ultimate measurement. This is about the linearization of the step response, which automatically leads to the linearization of amplitude and phase / group delay frequency responses etc. and this in an accuracy, which can hardly be achieved by other measurements.

In the fourth stage the ear comes into play. With pink noise, the developer can hear and evaluate differences that are no longer apparent, visually recognizable, or interpretable based on measurements. With music the impressions can be deepened.


The time references contained in the recordings, the corresponding spatial location of sound sources and the impulse dynamics are thus reproduced in their full intensity.

Tigris.jpg
Myro Tigris

The fruit tree[edit]

The subject of readings and their correct interpretation is not easy to understand. As an aid, the nature of the readings and what they mean can be illustrated using a fruit tree.
Measurements that do not show the signal structure, that is, the actual sound information, only indicate,

  • how many fruits are on the tree,
  • how big they are
  • and how many fruits are hanging from which branch.


Measurements that reveal the signal structure further indicate,

  • whether apples, pears, lemons or mangoes are hanging on the tree.
  • and whether they are rotten, pitted or plump and ripe.

This information is also of vital importance, for:
If the fruit is rotten, it doesn't matter how many there are, how big they are, or what branch they are hanging on!

If one also wants to know how the fruit tastes, one should bite into it. It follows:

Frequency response:

  • Size and number of fruits...


Radiation pattern:

  • ... where they hang...


Step response / measurements with various waveforms or with musical passages:

  • whether apples, pears, lemons or mangoes are hanging on the tree.
  • and whether they are rotten, pitted or plump and ripe.


Listen:

  • What do the fruits taste like?


Time correctness - a question of definition[edit]

The term "time-correct speakers" is actually a pure buzzword. It is not easily definable in its claim to designate the time behaviour as correct. The reason for this is that the time relations in the transient process differ considerably from the time relations in the steady state.
There are two possible approaches to defining time correctness:

1. the ideal case is the 1:1 transducing electroacoustic transducer. Its bandwidth would be theoretically unlimited and the step response would be a clean square wave.

2. in practice there are only normal cases whose bandwidths are limited.

If the theoretical ideal case were taken as a basis, no real product would be time-correct, phase-linear, group delay-linear, frequency response-linear, signal-correct, etc. The terms would not be applicable. It follows: The definition of the terms must be based on real circumstances. Here again there are two possibilities:

First: One orients oneself to the auditory bandwidth of the human ear. The basis for this can only be the healthy, young hearing. According to conservative measurement methods (continuous tone intensity), its bandwidth is 20 - 20,000 Hz or 16 - 24,000 Hz, depending on the source. Measurements of dynamic processes result in values of up to 100,000 Hz.
The lower bandwidth limit at 16 or 20 Hz would have to be reproduced without time and amplitude errors, since the auditory sense would detect these errors. In the case of the upper bandwidth limit, one is also exposed to a strong directional effect of the sound in reality and would have to agree on a radiation direction or a sum energy curve. Again, the time response and amplitude would have to be linear. Both bandwidth limits are subject to physical laws that real loudspeakers cannot satisfy. The human sense of hearing is too strict a standard for a definition of terms. No loudspeaker would meet it and we would have the same problem as with the "ideal case" at the beginning.

Secondly: Loudspeakers are offered in a variety of practical sizes, the transmission bandwidths of which vary due to physics. Consequently, one possibility is to accept the bandwidth limitation as a fact in principle and to put the main focus on the area between the transmission ends. This is where the transition areas between the drivers, which are decisive for the reproduction quality, are located in the case of multi-way loudspeakers, and in the case of a one-way loudspeaker the resonances of the diaphragm are the main problem. This area is also the area of highest perceptual sensitivity.

Time correctness (group delay, phase frequency response), like amplitude frequency response, is not an audible event. They are isolated theoretical parameters. One cannot hear time correctness, only waveforms. Therefore, time correctness alone should not be defined, but more meaningfully signal correctness. Only the sound vibrations, i.e. the sound pressure curve over time, are audible. Our sense of hearing distinguishes between sound events on the basis of the forms of oscillation (signal forms). This is already possible with an extremely short oscillation, such as a sine half-wave. Some sound events, such as hand claps, consist in part of only one or two oscillations. They can be distinguished from each other. They do not have a steady state in their signal structure. The recommendation on the subject of time correctness is therefore: Time correctness should not be considered in isolation, since it is not an audible event. The term signal correctness should be used. Time black.jpg
Myro Time 1'

Why don't all right walking speakers sound the same?[edit]

First of all, by "properly transducing" is meant the ability to maintain signals in their form as much as possible. Unlike loudspeakers with basically distorted transient response, signal / time correct loudspeakers in principle produce signal responses that are similar in shape to the input signal. Of course, this is only possible within the physically limited bandwidth of the transmission range. This is where the first difference between loudspeakers that convert correctly in principle can be found, as well as in the characteristics of the high and low pass of the respective loudspeaker.
In the border areas of the transmission range there are deviations of the signal form produced by the loudspeaker from the input signal. In addition, the loudspeakers differ in the slew rate, in the decay and in slight deformations or superpositions of the signals, e.g. by non-linearities in the amplitude course, the linearity of the movement of the membranes and by their partial oscillations and resonances. The radiation behaviour and the maximum sound pressure are also distinguishing features.

The limits of correct low frequency reproduction[edit]

The problem of correct low frequency reproduction basically lies in the physical limits. Low frequencies are slow oscillations. A woofer has to generate pressure with a sound wave moving away with approx. 340 m/s. The diaphragm is in relation to the wave. Thereby the membrane is small in relation to the wavelength. This requires an extremely wide excursion to faithfully reproduce the first half-wave, such as the beat of a bass drum. Even the excursion of long excursion drivers is completely insufficient for this. To bring a bass closer to the ideal by using more excursion has several disadvantages:

  • Doppler distortion / acoustic centers jumping back and forth.
  • Distortions due to non-linearities of the system
  • Electrical stress / heating of the voice coils
  • thereby high impedance and loss of dynamics

On the other hand, an increase of the membrane area together with the corresponding enclosures is a measure in the sense of the cause, but the possibilities and the acceptance of the users are the measure of all things here. The "right conversion" should therefore always be related to the transmission bandwidth of a certain loudspeaker size. There is no other way, because each loudspeaker represents a size limitation.

Subwoofer[edit]

Subwoofers are usually limited with higher order filters, which causes a timing error. The basic idea of limiting subwoofers low and steeply sloping, because low tones are difficult to locate, is counteracted by the timing errors that occur. A subwoofer that is coupled with the correct impulse needs flat filters like all other loudspeakers and thus plays into the midrange.
Another reason for bad timing is due to different travel times from the subwoofer and the main speakers to the listening position(s), which can only be compensated to a limited extent by electronic time delays. Bass impulses are locatable. And if they do not resonate at the same time and in phase with the overall signal, subwoofers are locatable. Rhythm errors regularly occur when subwoofers are used. Therefore, the recommendation is to do without them if possible.

Conclusion[edit]

The concept behind a loudspeaker design ultimately determines the result. There is a multitude of applications and user requirements that have to be taken into account when planning a model. In particular, there are aspects that enter into a design as specifications / restrictions on the part of potential buyers, such as the size, shape, price range, design, sound preferences, etc.. The insight from decades of loudspeaker development is that a loudspeaker designed according to all rules of the art would be almost unsaleable. Price, brand and design are the primary decision criteria of the "normal" customer. For mass manufacturers, many technical solutions are therefore out of the question, as they are simply not accepted. A manufacture like Myro, on the other hand, which also produces individual pieces, can respond to individual wishes that are excluded in mass production.

Terms for describing sound[edit]

The sonic nature of signal / time accurate sound transducers can be summarized under the term reality impression. Differentiated the following aspects are to be emphasized:

  • Pulse dynamics
  • pulse timbre
  • spatiality
  • Time relations of fundamental to overtones
  • atmosphere

The vocabulary for sound descriptions is largely exhausted in the field of conventional loudspeaker descriptions. Thus, an attempt is made to describe the aspects in more detail by analogies and examples.

Impulse Dynamics

This does not refer to how loud it pops when the drummer hits his drums. Rather, you hear the impulse dynamics in the clarity of the attack, in the lightning-like intensity. The attack doesn't stutter, doesn't get muddled.

Impulse timbre

With old pianos, you often have the problem of worn action. A worn hammer felt, for example, will make the attack of otherwise intact piano strings sound out of tune. Very similar to this, piano string strokes sound distorted in speakers with distorted transient reproduction.

Spatiality

With speakers that are not signal / time correct, the impression of space is like looking through a more or less large, differently shaped window, with more or less clear window glass. With a signal / time correct loudspeaker it seems as if everything, including oneself, is outside in the open air. This impression can be affected by phase / time errors within the recording and within the rest of the playback chain, or by very strong early reflections. The loudspeaker itself does not create the impression of spatial boundedness.

Time relations of fundamental to harmonics

If a bartender mixes us a cocktail and combines all the aromas and flavors into a delicious whole, but we turn to this cocktail only after an hour-long bar conversation, then the different components have partially separated again, settled. We taste then for example at the first sip a sour note, followed by some bitterness and a sticky sweet sediment.

Atmosphere

As an example, the processing of a recording in a church, 16 bit / 44.1 kHz output format. There was a basic noise level to be discerned, the cause of which was not clearly definable, somehow disturbing, and it pushed itself between the tones. Overall, there was a mixture of sharpness and jamminess in the sound. The consequence was the use of a noise filter and the recording was smooth and free of noise. The cause, however, was a lack of resolution of the subtle sound components, a lack of fine dynamics, disturbed time relationships.
When the output format was changed to 24 bit and 32 bit and the sampling frequency was increased, one veil after the other was removed with each step and the overtones of the instruments lost sharpness and gained clarity and naturalness. The noise turned out to be an ambience that got under the skin due to the difficile acoustics of the church room.

Time u MagicMusica 800hoch.jpg
Myro Time 2 and Myro Magic Musica


<zurück: Myroklopädie>
<zurück: Myro>