Difference between revisions of "The Acoustic Centers Of The Chassis"

(Keine Beschreibung eines spezifischen Gerätes, eher Werbung)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{delete candidate}}
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|  
 
|  
Für die zeitgleiche Addition der Schallanteile der einzelnen Chassis am Hörplatz sind identische Wegstrecken / Laufzeiten der verschiedenen akustischen Zentren zum Ohr zwingend. Die elementare Voraussetzung für die richtige Summenbildung ist der zeitgleiche Start der Schallereignisse. Der Schall des Hochtöners und der Schall der Mitteltieftöner müssen genau zum selben Zeitpunkt beginnen. Bei Drei-Wege Konstruktionen gilt das ebenso für den Tieftöner. Es gilt für Mehrwegesysteme und auch für Ein-Wege-Lautsprecher, bei denen sich auf der Membran bei verschiedenen Frequenzen unterschiedliche akustische Zentren ausbilden. Die Wegstrecke und damit die Laufzeit aller akustischen Zentren zum Hör- / Messort muss zwingend identisch sein, damit die Schallanteile zeitsynchron sind und sich richtig überlagern können.<br />
+
For the simultaneous addition of the sound components of the individual drivers at the listening position, identical distances / travel times of the various acoustic centers to the ear are mandatory. The elementary prerequisite for the correct summation is the simultaneous start of the sound events. The sound of the tweeter and the sound of the midrange / bass drivers must start at exactly the same time. In three-way constructions this also applies to the woofer. It applies to multi-way systems and also to one-way loudspeakers, e.g. [[Are full-range drivers optimal?|broad-range drivers]], where different acoustic centres are formed on the diaphragm at different frequencies. The distance and thus the time of flight of all acoustic centers to the listening / measurement location must be identical, so that the sound components are time-synchronous and can overlap properly.<br />
In der Praxis gibt es bei Lautsprechersystemen gewöhnlich bauformbedingt einen Tiefenversatz der akustischen Zentren. Das akustische Zentrum ist der Punkt, von dem scheinbar der gesamte erzeugte Schall ausgeht. Es ist ein virtueller, gedachter Punkt, der sich nur messtechnisch präzise ermitteln lässt. Die Lage des akustischen Zentrums hängt von verschiedenen konstruktiven Bedingungen ab. Die Steifigkeit des Schwingspulenträgers, der Membran und deren Geometrie (und weitere) spielen eine Rolle. Je weicher die Membran ist, desto tiefer liegt das akustische Zentrum. Die Schallentstehungsorte liegen bei Chassis im nutzbaren Übertragungsbereich, also dort, wo die Membranen nicht in chaotische Partialschwingungen aufbrechen, nahe der Schwingspulenvorderkante. Zur einfachen Orientierung kann man die Verbindungsstelle der Schwingspule mit der Membran als akustisches Zentrum annehmen.  
+
In practice, there is usually a depth offset of the acoustic centers in loudspeaker systems due to the design. The acoustic center is the point from which all of the sound generated appears to emanate. It is a virtual, imaginary point that can only be precisely determined by measurement. The location of the acoustic center depends on various design conditions. The stiffness of the voice coil former, the diaphragm and its geometry (and others) play a role. The softer the diaphragm, the lower the acoustic center. The sound origination points are located near the voice coil leading edge of drivers in the usable transmission range, i.e. where the diaphragms do not break up into chaotic partial vibrations. For easy orientation one can assume the junction of the voice coil with the diaphragm as the acoustic center.  
Bei Hochtönern befindet sich das akustische Zentrum relativ weit vorne, bei Tieftönern bis zu mehreren Zentimetern hinter der Vorderkante. ''(Bei den sehr harten Accuton Keramikmembranen liegt das akustische Zentrum eines 20 cm Tieftöners etwa so wie bei einem 17 cm Chassis aus anderem Material. Bei der [[Accuton Cell Serie]] wiederum sind die akustischen Zentren der Chassis ausnahmsweise präzise aufeinander abgestimmt.)'' Außerhalb des sinnvollen Einsatzbereichs der Chassis entstehen jedoch frequenzabhängig mehrere akustische Zentren auf der Membran mit entsprechenden Laufzeitunterschieden und Interferenzen. <br />
+
For tweeters, the acoustic center is relatively far forward; for woofers, it is up to several inches behind the leading edge. ''(With the very hard Accuton ceramic diaphragms, the acoustic center of a 20 cm woofer is about the same as a 17 cm chassis made of other material. In the [[Accuton Cell Series]], on the other hand, the acoustic centers of the drivers are exceptionally precisely matched.)'' However, outside the drivers' useful range of use, multiple acoustic centers occur on the diaphragm as a function of frequency, with corresponding time-of-flight differences and interference. <br />
Würde man um das Ohr mit einem Zirkel einen Kreisbogen ziehen, müssten alle akustischen Zentren der Lautsprechersysteme auf dem Kreisbogen liegen, um exakt gleich weit vom Mittelpunkt (dem Ohr) entfernt zu sein. Dabei kommt es auf Millimeter an. Damit ist die Laufzeit gleich und eine richtige Summenbildung ist unter diesem elementaren Aspekt möglich. Ist dies nicht der Fall, dann sind das gleichzeitige Eintreffen der Schallanteile und deren richtige Schallsummenbildung nicht möglich, der Lautsprecher verzerrt die Schallsignale und erzeugt künstliche Geräusche. Die originalgetreue Reproduktion findet nicht mehr statt.<br />  
+
If one were to draw an arc around the ear with a compass, all acoustic centers of the loudspeaker systems would have to lie on the arc in order to be exactly equidistant from the center (the ear). Millimeters are what matters here. Thus the running time is the same and a correct summation is possible under this elementary aspect. If this is not the case, the simultaneous arrival of the sound components and their correct summation is not possible, the loudspeaker distorts the sound signals and produces artificial noises. The faithful reproduction no longer takes place.<br />  
Falls der Lautsprecher dieses Kriterium konstruktionbedingt erfüllt, ergibt sich daraus eine entsprechende, richtige Hörachse vom Ohr des Hörers hin zum Streckenmittelpunkt der Verbindungslinie der akustischen Zentren der Chassis, insbesondere der Hochmitteltonchassis. Wenn wir beispielsweise die akustischen Zentren zweier Chassis miteinander verbinden und die Senkrechte an der Mitte der Verbindungsstrecke zum Ohr des Hörers zeigt, ist die zeitgleiche Addition der Schallanteile möglich. Dieser Senkrechten entlang ergeben sich nun Hör- bzw. Mikrofonpositionen mit gleichen Laufzeiten zu den Chassis. Bei vertikaler Chassisanordnung ergibt sich nur auf dieser Senkrechten, mit einer gewissen horizontalen Spannweite (horizontalen Ebene), die auf die Zeitsynchronisation bezogen richtige Summenbildung der von den einzelnen Chassis abgestrahlten Schallstrukturen.  
+
If the loudspeaker fulfils this criterion due to its design, this results in a corresponding, correct listening axis from the listener's ear to the distance centre of the connecting line of the acoustic centres of the drivers, especially the high-midrange drivers. For example, if we connect the acoustic centers of two chassis and the perpendicular at the center of the connecting line points to the ear of the listener, the simultaneous addition of the sound components is possible. Along this perpendicular we now get listening or microphone positions with equal travel times to the chassis. In case of a vertical chassis arrangement, the correct summation of the sound structures radiated by the individual chassis in relation to the time synchronization only results on this vertical, with a certain horizontal span (horizontal plane).  
 
|
 
|
[[Datei:Pulse-schallwandgeometrie.jpg]]<br />
+
[[File:Pulse-schallwandgeometrie.jpg]]<br />
''Die präzise abgestimmte Position der akustischen Zentren bei der [[Genuin Pulse]] mittels abgestufter Schallwand''
+
''The precisely tuned position of the acoustic centers (red) of the drivers in the [[Genuin Pulse]] using a stepped baffle.''
 
|}
 
|}
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
| [[Datei:Post-81-1281642339.jpg]]<br />
+
| [[File:Bild7.jpg]]<br />
 
''[[Myro a priori 10.02]]''
 
''[[Myro a priori 10.02]]''
 
|  
 
|  
Nähern wir uns nun auf dieser Senkrechten (Zeitsynchronisationsachse / -ebene) mit unserer Hör- / Messposition dem Lautsprecher, so ergibt sich auch bei der konstruktionsbedingt laufzeitgerechten Chassispositionierung zudem das Phänomen der Schallbündelung durch die chassiseigenen Richtcharakteristiken. ''(Die Richtcharakteristik der Chassis ergibt sich wesentlich aus deren Membrandurchmesser und der Membrangeometrie sowie der schnelleabhängigen Richtungsorientierung der Luftteilchen.)'' Dieses Kriterium verhindert eine Übertragbarkeit der Nahdistanzergebnisse auf die praxisgerechten längeren Hördistanzen.
+
If we now approach the loudspeaker on this perpendicular (time synchronisation axis / plane) with our listening / measuring position, the phenomenon of sound bundling due to the chassis' own directional characteristics also arises in the case of the design-related run-time correct chassis positioning. ''(The directional characteristic of the chassis results essentially from their membrane diameter and the membrane geometry as well as the fast-dependent directional orientation of the air particles.)'' This criterion prevents a transferability of the near distance results to the practical longer listening distances.
  
* Bei zwei akustischen Zentren gibt es eine Zeitsynchronisationsachse.
+
* With two acoustic centers, there is a time synchronization axis.
* Bei drei akustischen Zentren gibt es zwei Zeitsynchronisationsachsen
+
* With three acoustic centers there are two time synchronization axes.
* usw.
+
etc.
 
 
Ein Hör- / Messpunkt kann jedoch nicht gleichzeitig auf zwei Achsen liegen. Aus all dem folgt:<br />
 
Die zeitsynchrone Summenbildung ist nur bei zwei akustischen Zentren im Nahbereich möglich, jedoch ist die Summe durch die Richtcharakteristik der Chassis nicht auf größere praxisgerechte Distanzen übertragbar. Bei zwei akustischen Zentren und einem Nahbereichsmesspunkt (ca. 1 m Abstand) auf der "Zeitsynchronisationsebene" und unter der Annahme, dass es ''keine Richtcharakteristikprobleme'' gibt, sind die Ergebnisse unter Vernachlässigung der frequenzabhängigen Dämpfung der Luft auf größere Distanzen annähernd übertragbar.<br />
 
Bei drei oder mehr akustischen Zentren ist die richtige Summenbildung im Nahbereich - insbesondere auch bei gleichzeitiger Übertragbarkeit auf andere Distanzen - unmöglich. In diesem Fall ist bei vertikaler Anordnung der akustischen Zentren eine korrekte Summierung nur auf ''einem'' horizontalen Kreissegment vor dem Lautsprecher möglich. Das bedeutet, bei drei oder mehr akustischen Zentren ist eine korrekte Summierung der Startflanken zwingend bei größerem Abstand, idealerweise am Hörplatz, vorzunehmen.<br />
 
Mit zunehmenden Abstand verringern sich die Synchronisationprobleme der Startflanken einer Schallform da die winkelbedingten Entfernungsdifferenzen geringer werden.
 
Die einzige Möglichkeit, den Punkt der phasengleichen Schalladdition möglichst nah am Lautsprecher zu halten, bietet sich bei einem akustischen Zentrum, wobei der Richtcharakteristik hier noch größere Bedeutung zukommt. Wenn wir nah vor einem Lautsprecher hören bzw. messen, ergeben sich bei Drei-Wege Konstruktionen zwingend (bei Zwei-Wege Konstruktionen in empfindlicher Abhängigkeit von der Ohr- / Mikrofonposition) Strecken- und somit Laufzeitdifferenzen zu den einzelnen Systemen. In der Grenzfallbetrachtung haben wir beispielsweise bei einer Mikrofonposition direkt vor dem Hochtöner eine Streckendifferenz in der Größenordnung des Abstands zum akustischen Zentrum des Mitteltöners. Daraus ergibt sich eine für die Summenbildung erhebliche Laufzeitdifferenz. Die Startpunkte liegen dann je nach Abstandsdifferenz zum Mikrofon schon so weit auseinander, dass die Schallanteile von Hoch- und Mitteltieftöner nicht mehr übereinander liegen.<br />
 
Ein weiteres Problem bei kurzen Abständen sind die Winkeländerungen zu den verschiedenen Chassis. In der vorherigen Grenzfallbetrachtung hätten wir 0° zum Hochtöner und nahezu 90° zum Mitteltöner. Der Mitteltöner bündelt bei der Schallabstrahlung mit zunehmender Frequenz. So passt gar nichts mehr zusammen.<br />
 
  
 +
However, an auditory / measurement point cannot lie on two axes at the same time. From all this follows:<br />
 +
Time-synchronous summation is only possible with two acoustic centers at close range, but the sum is not transferable to larger practical distances due to the directional characteristics of the drivers. With two acoustic centers and one close-range measurement point (approx. 1 m distance) on the ''time synchronization plane'' and assuming ''no directional characteristic problems'', the results are approximately transferable to larger distances, neglecting the frequency-dependent attenuation of the air.<br />
 +
In the case of three or more acoustic centers, the correct summation at close range is impossible - especially also with simultaneous transferability to other distances. In this case, if the acoustic centers are arranged vertically, correct summation is only possible on ''one'' horizontal segment of a circle in front of the loudspeaker. This means that with three or more acoustic centres a correct summation of the starting edges must be carried out at a greater distance, ideally at the listening position. <br /> Vertical one always has the delay error of the time-shifted starting edges of the individual drivers. With steep filters the overlap is smaller and the sum is more similar to a sawtooth. With flat filters there is the same delay error, but with a more slurred sum pattern. This tends to sound less aggressive. But both are wrong.<br />
 +
As the distance increases, the synchronization problems of the starting edges of a sound shape decrease because the angular distance differences become smaller.
 +
The only way to keep the point of in-phase sound addition as close as possible to the loudspeaker is to have an acoustic center, and here the directivity is even more important. If we listen or measure close in front of a loudspeaker, three-way constructions inevitably (two-way constructions in sensitive dependence on the ear / microphone position) result in distance and thus delay differences to the individual systems. In the borderline case we have, for example, with a microphone position directly in front of the tweeter a distance difference in the order of magnitude of the distance to the acoustic centre of the midrange driver. This results in a considerable delay difference for the summation. Depending on the distance difference to the microphone, the starting points are then already so far apart that the sound components of the tweeter and mid-woofer are no longer on top of each other.<br />
 +
Another problem with short distances are the angle changes to the different drivers. In the previous boundary case consideration we would have 0° to the tweeter and almost 90° to the midrange driver. The midrange driver bundles with increasing frequency. So nothing fits together anymore.
 
|}
 
|}
Mit zunehmender Distanz des Hörplatzes zum Lautsprecher verringern sich die genannten Probleme. Das passt zur tatsächlichen Anwendung. Wenn die akustischen Zentren der Chassis konstruktionbedingt unterschiedliche Laufzeiten zum Hör- bzw. Messort ergeben, ist die richtige Summenbildung ausgeschlossen. (Ausnahme: mit digitaler Verzögerungsschaltung) Um einen möglichen Gedankenfehler auszuschließen: Dies alles ist grundsätzlich unabhängig von der Frequenzweichengestaltung.
+
With increasing distance of the listening position to the loudspeaker the mentioned problems decrease. This fits to the actual application. If the acoustic centers of the chassis result in different travel times to the listening or measurement location due to the design, the correct summation is impossible. (Exception: with digital delay circuit) To exclude a possible thought error: All this is basically independent of the crossover design.
Und auch digitale Verzögerungen zum Zwecke der Zeitsynchronität der Sprungantworten einzelner Chassis können sich nur auf einen einzigen Messpunkt beziehen. Die Aspekte der Grenzfallbetrachtung gelten auch hier. Die Übertragungscharakteristik der einzelnen Chassis und die Frequenzweichengestaltung bestimmen, ob die Druck-Zeit-Summenbildung ab dem Startpunkt, dem Anfangspunkt des Schallereignisses stimmt. Das ist dann ein anderes, weitaus schwierigeres Kapitel.
+
And even digital delays for the purpose of time synchronization of the step responses of individual drivers can only refer to a single measurement point. The aspects of boundary case consideration also apply here. The transfer characteristics of the individual drivers and the crossover design determine whether the pressure-time summation is correct from the starting point, the initial point of the sound event. That is another, much more difficult chapter.
  
*'''Koaxiallautsprecher''' oder andere Konstruktionen mit extrem nah beieinanderliegenden akustischen Zentren lassen kürzere Hör- / Messabstände zu als Mehrwegesysteme mit weiter auseinanderliegenden akustischen Zentren. Sie zeigen in der Regel nur zwischen 15 - 20 Grad außerhalb der Achse einen akzeptablen Übertragungsverlauf, wobei es so gut wie keinen gibt, der sich analog zeitrichtig abstimmen lässt. Bei Koaxiallautsprechern müssen die akustischen Zentren der Einzelsysteme zwingend auf gleicher Höhe liegen, ansonsten ist die zeitsynchrone Schalladdition generell ausgeschlossen. Ausnahme, wie in allen anderen Fällen auch: Digitaltechnik mit Verzögerung, wobei diese auch nur an einem Bezugspunkt (bei drei akustischen Zentren) oder auf einer Bezugsachse (bei zwei akustischen Zentren) gelten. Koaxiallautsprecher haben zudem immer das Problem einer tiefmitteltonhubbedingten bewegten Schallumgebung des Hochtöners. Zudem werden die Membran-[[Resonanzen]] der Chassis durch die extremen Schalldrücke der nahen benachbarten Systeme von außen extrem stark angeregt. Hartmembranen mit üblicherweise mechanisch unbedämpften Membranresonanzen scheiden hier aus.
+
*'''Coaxial speakers''' or other designs with extremely close acoustic centers allow for shorter listening / measuring distances than multi-way systems with more widely spaced acoustic centers. As a rule, they only show an acceptable transmission response between 15 - 20 degrees off-axis, and there are virtually none that can be tuned in analogue time. In the case of coaxial loudspeakers, the acoustic centres of the individual systems must necessarily be at the same height, otherwise time-synchronous sound addition is generally impossible. Exception, as in all other cases: digital technology with delay, whereby this also only applies at one reference point (with three acoustic centres) or on one reference axis (with two acoustic centres). Coaxial loudspeakers also always have the problem of a low-midrange stroke-induced moving sound environment of the tweeter. In addition, the diaphragm [[resonances]] of the drivers are extremely excited by the extreme sound pressures of the close neighboring systems from the outside. Hard diaphragms with usually mechanically undamped diaphragm resonances are not suitable here.
  
*Manger empfiehlt für seinen '''Mangerwandler''' einen Mindestabstand zur Ausbildung einer kohärenten Schallwelle.
+
*Manger recommends for his '''Manger transducer''' a minimum distance for the formation of a coherent sound wave.
  
*'''Vollbereichsflächenstrahler''' sind von Partialschwingungen besonders oft betroffen. Sie bilden bei höheren Frequenzen mehrere akustische Zentren auf der Membran aus. Viele Schwingungsbäuche an vielen verschiedenen Orten der Membran führen zu Interferenzen. Je nachdem, unter welchem Winkel man sich als Hörer zur Membran befindet, verformt sich die Signalform entsprechend. Ein Flächenstrahler ist keine Punktschallquelle, ganz im Gegenteil!
+
*'''Full range surface radiators''' are particularly often affected by partial oscillations. They form multiple acoustic centers on the diaphragm at higher frequencies. Many vibrational bumps at many different locations on the diaphragm lead to interference. Depending on the angle at which the listener is positioned in relation to the diaphragm, the signal shape is distorted accordingly. A flat panel radiator is not a point source, quite the opposite!
  
Wie wir erkennen können, lassen die naturgesetzlichen Bedingungen das sinnvolle Hören bzw. Messen im Nahbereich nicht zu.
+
As we can see, the conditions of natural law do not permit sensible listening or measuring at close range.
Bei entsprechend konstruierten Punktschallquellen kann der Hör- / Messabstand in der Regel kürzer sein.
+
With appropriately constructed point sources, the listening / measuring distance can usually be shorter.
  
Bei den Betrachtungen sollte man insgesamt unterscheiden, ob sie sich auf den Einschwingvorgang oder den eingeschwungenen Zustand beziehen. Die obigen Betrachtungen wurden wesentlich auf die Messung von Sprungantworten, insbesondere auch bei kurzen Distanzen. bezogen. Die Erläuterungen zur Summenbildung beziehen sich demzufolge schwerpunktmäßig auf die Zeitsynchronisation der Anfänge von Schallereignissen und deren unmittelbare Laufzeitabhängigkeit in Bezug auf die akustischen Zentren und den Hör- / Messort. Hier spiegelt die "geometrische" Betrachtung der akustischen Zentren und ihr gemeinsamer Summierpunkt die tatsächlichen Verhältnisse exakt wieder. Die Frequenzweiche verändert jedoch die Phasenlage der beteiligten Chassis und damit das virtuelle akustische Zentrum, welches dadurch frequenzabhängig wird, im eingeschwungenen Zustand - und nur dort. Die Startflanken der Einschwingvorgänge bleiben davon aber unbeeinflusst. Sie lassen sich ggf. nur durch die konstruktive Anordnung der Chassis oder mit digitalen Verzögerungen beeinflussen.
+
With the considerations one should distinguish altogether whether they refer to the transient or the steady state. The above considerations were essentially related to the measurement of step responses, especially also at short distances. The explanations for the summation therefore mainly refer to the time synchronization of the beginnings of sound events and their direct dependence on the time of flight in relation to the acoustic centers and the listening / measurement location. Here, the "geometrical" consideration of the acoustic centers and their common summation point exactly reflects the actual conditions. However, the crossover changes the phase position of the drivers involved and thus the virtual acoustic center, which thus becomes frequency-dependent, in the steady state - and only there. The starting edges of the transient processes remain unaffected by this. If necessary, they can only be influenced by the constructive arrangement of the chassis or with digital delays.
  
[[Datei:Bild7.jpg]]
+
[[File:Bild7.jpg]]
  
  
 
<''zurück : [[Myroklopädie]]''><br />
 
<''zurück : [[Myroklopädie]]''><br />
 
<''zurück : [[Myro]]''>
 
<''zurück : [[Myro]]''>

Latest revision as of 12:05, 31 October 2020

Template:Delete candidate

For the simultaneous addition of the sound components of the individual drivers at the listening position, identical distances / travel times of the various acoustic centers to the ear are mandatory. The elementary prerequisite for the correct summation is the simultaneous start of the sound events. The sound of the tweeter and the sound of the midrange / bass drivers must start at exactly the same time. In three-way constructions this also applies to the woofer. It applies to multi-way systems and also to one-way loudspeakers, e.g. broad-range drivers, where different acoustic centres are formed on the diaphragm at different frequencies. The distance and thus the time of flight of all acoustic centers to the listening / measurement location must be identical, so that the sound components are time-synchronous and can overlap properly.
In practice, there is usually a depth offset of the acoustic centers in loudspeaker systems due to the design. The acoustic center is the point from which all of the sound generated appears to emanate. It is a virtual, imaginary point that can only be precisely determined by measurement. The location of the acoustic center depends on various design conditions. The stiffness of the voice coil former, the diaphragm and its geometry (and others) play a role. The softer the diaphragm, the lower the acoustic center. The sound origination points are located near the voice coil leading edge of drivers in the usable transmission range, i.e. where the diaphragms do not break up into chaotic partial vibrations. For easy orientation one can assume the junction of the voice coil with the diaphragm as the acoustic center. For tweeters, the acoustic center is relatively far forward; for woofers, it is up to several inches behind the leading edge. (With the very hard Accuton ceramic diaphragms, the acoustic center of a 20 cm woofer is about the same as a 17 cm chassis made of other material. In the Accuton Cell Series, on the other hand, the acoustic centers of the drivers are exceptionally precisely matched.) However, outside the drivers' useful range of use, multiple acoustic centers occur on the diaphragm as a function of frequency, with corresponding time-of-flight differences and interference.
If one were to draw an arc around the ear with a compass, all acoustic centers of the loudspeaker systems would have to lie on the arc in order to be exactly equidistant from the center (the ear). Millimeters are what matters here. Thus the running time is the same and a correct summation is possible under this elementary aspect. If this is not the case, the simultaneous arrival of the sound components and their correct summation is not possible, the loudspeaker distorts the sound signals and produces artificial noises. The faithful reproduction no longer takes place.
If the loudspeaker fulfils this criterion due to its design, this results in a corresponding, correct listening axis from the listener's ear to the distance centre of the connecting line of the acoustic centres of the drivers, especially the high-midrange drivers. For example, if we connect the acoustic centers of two chassis and the perpendicular at the center of the connecting line points to the ear of the listener, the simultaneous addition of the sound components is possible. Along this perpendicular we now get listening or microphone positions with equal travel times to the chassis. In case of a vertical chassis arrangement, the correct summation of the sound structures radiated by the individual chassis in relation to the time synchronization only results on this vertical, with a certain horizontal span (horizontal plane).

Pulse-schallwandgeometrie.jpg
The precisely tuned position of the acoustic centers (red) of the drivers in the Genuin Pulse using a stepped baffle.

Bild7.jpg

Myro a priori 10.02

If we now approach the loudspeaker on this perpendicular (time synchronisation axis / plane) with our listening / measuring position, the phenomenon of sound bundling due to the chassis' own directional characteristics also arises in the case of the design-related run-time correct chassis positioning. (The directional characteristic of the chassis results essentially from their membrane diameter and the membrane geometry as well as the fast-dependent directional orientation of the air particles.) This criterion prevents a transferability of the near distance results to the practical longer listening distances.

  • With two acoustic centers, there is a time synchronization axis.
  • With three acoustic centers there are two time synchronization axes.

etc.

However, an auditory / measurement point cannot lie on two axes at the same time. From all this follows:
Time-synchronous summation is only possible with two acoustic centers at close range, but the sum is not transferable to larger practical distances due to the directional characteristics of the drivers. With two acoustic centers and one close-range measurement point (approx. 1 m distance) on the time synchronization plane and assuming no directional characteristic problems, the results are approximately transferable to larger distances, neglecting the frequency-dependent attenuation of the air.
In the case of three or more acoustic centers, the correct summation at close range is impossible - especially also with simultaneous transferability to other distances. In this case, if the acoustic centers are arranged vertically, correct summation is only possible on one horizontal segment of a circle in front of the loudspeaker. This means that with three or more acoustic centres a correct summation of the starting edges must be carried out at a greater distance, ideally at the listening position.
Vertical one always has the delay error of the time-shifted starting edges of the individual drivers. With steep filters the overlap is smaller and the sum is more similar to a sawtooth. With flat filters there is the same delay error, but with a more slurred sum pattern. This tends to sound less aggressive. But both are wrong.
As the distance increases, the synchronization problems of the starting edges of a sound shape decrease because the angular distance differences become smaller. The only way to keep the point of in-phase sound addition as close as possible to the loudspeaker is to have an acoustic center, and here the directivity is even more important. If we listen or measure close in front of a loudspeaker, three-way constructions inevitably (two-way constructions in sensitive dependence on the ear / microphone position) result in distance and thus delay differences to the individual systems. In the borderline case we have, for example, with a microphone position directly in front of the tweeter a distance difference in the order of magnitude of the distance to the acoustic centre of the midrange driver. This results in a considerable delay difference for the summation. Depending on the distance difference to the microphone, the starting points are then already so far apart that the sound components of the tweeter and mid-woofer are no longer on top of each other.
Another problem with short distances are the angle changes to the different drivers. In the previous boundary case consideration we would have 0° to the tweeter and almost 90° to the midrange driver. The midrange driver bundles with increasing frequency. So nothing fits together anymore.

With increasing distance of the listening position to the loudspeaker the mentioned problems decrease. This fits to the actual application. If the acoustic centers of the chassis result in different travel times to the listening or measurement location due to the design, the correct summation is impossible. (Exception: with digital delay circuit) To exclude a possible thought error: All this is basically independent of the crossover design. And even digital delays for the purpose of time synchronization of the step responses of individual drivers can only refer to a single measurement point. The aspects of boundary case consideration also apply here. The transfer characteristics of the individual drivers and the crossover design determine whether the pressure-time summation is correct from the starting point, the initial point of the sound event. That is another, much more difficult chapter.

  • Coaxial speakers or other designs with extremely close acoustic centers allow for shorter listening / measuring distances than multi-way systems with more widely spaced acoustic centers. As a rule, they only show an acceptable transmission response between 15 - 20 degrees off-axis, and there are virtually none that can be tuned in analogue time. In the case of coaxial loudspeakers, the acoustic centres of the individual systems must necessarily be at the same height, otherwise time-synchronous sound addition is generally impossible. Exception, as in all other cases: digital technology with delay, whereby this also only applies at one reference point (with three acoustic centres) or on one reference axis (with two acoustic centres). Coaxial loudspeakers also always have the problem of a low-midrange stroke-induced moving sound environment of the tweeter. In addition, the diaphragm resonances of the drivers are extremely excited by the extreme sound pressures of the close neighboring systems from the outside. Hard diaphragms with usually mechanically undamped diaphragm resonances are not suitable here.
  • Manger recommends for his Manger transducer a minimum distance for the formation of a coherent sound wave.
  • Full range surface radiators are particularly often affected by partial oscillations. They form multiple acoustic centers on the diaphragm at higher frequencies. Many vibrational bumps at many different locations on the diaphragm lead to interference. Depending on the angle at which the listener is positioned in relation to the diaphragm, the signal shape is distorted accordingly. A flat panel radiator is not a point source, quite the opposite!

As we can see, the conditions of natural law do not permit sensible listening or measuring at close range. With appropriately constructed point sources, the listening / measuring distance can usually be shorter.

With the considerations one should distinguish altogether whether they refer to the transient or the steady state. The above considerations were essentially related to the measurement of step responses, especially also at short distances. The explanations for the summation therefore mainly refer to the time synchronization of the beginnings of sound events and their direct dependence on the time of flight in relation to the acoustic centers and the listening / measurement location. Here, the "geometrical" consideration of the acoustic centers and their common summation point exactly reflects the actual conditions. However, the crossover changes the phase position of the drivers involved and thus the virtual acoustic center, which thus becomes frequency-dependent, in the steady state - and only there. The starting edges of the transient processes remain unaffected by this. If necessary, they can only be influenced by the constructive arrangement of the chassis or with digital delays.

Bild7.jpg


<zurück : Myroklopädie>
<zurück : Myro>