Difference between revisions of "The Swing-in"
(→Tieftöner) |
|||
Line 1: | Line 1: | ||
+ | Ein Lautsprecher versucht Transienten zu reproduzieren, indem er einschwingt. Dieses Einschwingen erfolgt gemäß seiner Übertragungsfunktion, sofern es keine Nichtlinearitäten gibt. Den Begriff ''Transienten'' verwendet man für Schallereignisse. Transienten sind Initialgeräusche mit einem breiten Frequenzspektrum, deren Signalformen von Natur aus keiner vorgegebenen Definition entsprechen (sie sind in keiner Weise bestimmt / berechnet). Das Einschwingen des technischen Systems Lautsprecher wird nicht Transiente genannt.<br /> | ||
+ | Die Zeit bzw. Anzahl der Schwingungen, die ein Lautsprecher braucht, bis er dem Eingangssignal folgen kann, nennt man ''Einschwingvorgang''. Die Zeit bzw. Anzahl der Schwingungen, die ein Lautsprecher dem Eingangssignal folgt, nennt man ''eingeschwungenen Zustand''. | ||
+ | |||
+ | |||
== Hochtöner == | == Hochtöner == | ||
Beim Hochtöner, am oberen Übertragungsende, ist insbesondere die Resonanzfrequenz der Membran ausschlaggebend. | Beim Hochtöner, am oberen Übertragungsende, ist insbesondere die Resonanzfrequenz der Membran ausschlaggebend. |
Revision as of 09:32, 9 October 2016
Ein Lautsprecher versucht Transienten zu reproduzieren, indem er einschwingt. Dieses Einschwingen erfolgt gemäß seiner Übertragungsfunktion, sofern es keine Nichtlinearitäten gibt. Den Begriff Transienten verwendet man für Schallereignisse. Transienten sind Initialgeräusche mit einem breiten Frequenzspektrum, deren Signalformen von Natur aus keiner vorgegebenen Definition entsprechen (sie sind in keiner Weise bestimmt / berechnet). Das Einschwingen des technischen Systems Lautsprecher wird nicht Transiente genannt.
Die Zeit bzw. Anzahl der Schwingungen, die ein Lautsprecher braucht, bis er dem Eingangssignal folgen kann, nennt man Einschwingvorgang. Die Zeit bzw. Anzahl der Schwingungen, die ein Lautsprecher dem Eingangssignal folgt, nennt man eingeschwungenen Zustand.
Hochtöner
Beim Hochtöner, am oberen Übertragungsende, ist insbesondere die Resonanzfrequenz der Membran ausschlaggebend. Bei vielen Hochtönern verläuft der Frequenzgang nur deshalb bis 20 kHz, weil Tiefpass und Membranresonanz derart abgestimmt worden sind, dass sich daraus ein nahezu linearer Verlauf ergibt. Zu erkennen ist das ein einem steilen Abfall oberhalb der Resonanzfrequenz, also am Ende des im Frequenzgang sichtbaren Übertragungsbereichs. Das Signal- / Zeitverhalten sieht dabei allerdings meist schon ab 5 bis 10 kHz schlecht aus. Die Einschwingvorgänge (1. Halbwelle) erfolgen nicht mit der Anregungsfrequenz, beinhalten regelmäßig tiefere Frequenzen und die Amplitude liegt deutlich unter dem Wert im eingeschwungenen Zustand. Klanglich bedeutet das, dass die Hochtonimpulse zu leise und in der Tonhöhe zu tief sind. Der Frequenzgang gaukelt uns aber etwas ganz anderes vor!
TieftönerIm Tiefbassbereich bewegen wir uns im physikalischen Grenzbereich der in ihren geometrischen Dimensionen begrenzten Wandler und der zur Vermeidung akustischer Kurzschlüsse notwendigen Gehäuse. Tiefe Frequenzen sind langsame Schwingungen. Ein Tieftöner muss dabei Druck bei einer sich mit ca. 345 m/s entfernenden Schallwelle erzeugen. Dabei ist die Membran im Verhältnis zur Wellenlänge klein. Das erfordert eine extrem weite Auslenkung zur originalgetreuen Reproduktion gerade der ersten Halbwelle, wie z.B. bei dem Anschlagen einer Bassdrum. Dafür ist selbst der Hub von Langhubchassis völlig unzureichend.
Alle Funktionen haben eine Zeitkonstante. Das Einschwingen eines Lautsprechers unterliegt mehrerer komplexer Zeitkonstanten.
|
Datei:Subtronik.jpg |
Datei:Lautsprecher-purus-11-by-michael-weidlich.jpg |
Schauen wir uns das Einschwingverhalten von Instrumenten und Geräuschen an: Bei natürlichen Schallereignissen sind die ersten Halbwellen in der Regel die lautesten. Die nachfolgenden Halbwellen werden mehr oder weniger schnell leiser. Somit haben wir bei den Lautsprechern ein unnatürliches, entgegengesetztes Verhalten. Dieses ist bei Gehäuseabstimmungen mit zusätzlichem Resonanzsystem noch unnatürlicher, da das Verhältnis von ersten zu nachfolgenden Halbwellen noch entgegengesetzter wird. Je besser der gesamte Phasenverlauf eines Lautsprechers im mittleren und oberen Bereich wird (auch im Einschwingen), desto mehr fällt das schlechte Verhalten zu tiefen Tönen hin auf. Digital lässt sich zwar die Gruppenlaufzeit entzerren, jedoch bleibt stets das Problem der fehlenden Amplitude im Einschwingen - in dem Zeitraum, wo der Strahlungswiderstandsverlauf die Rahmenbedingungen setzt, bevor der Resonanzfall eintritt. Das richtige Wandeln in den Grenzbereichen des Übertragungssystems, die richtigen Zeit-Amplitudenbeziehungen zu erreichen, ist physikalisch unmöglich. Was bleibt, ist die praxisgerechte, von jedem individuell zu bestimmende maximale Größe der Membranfläche und der erforderlichen Konstruktion. Für diese individuellen Anforderungen müssen Lautsprecher in entsprechenden, immer begrenzten Größen entwickelt werden. Und diese sollen innerhalb des physikalisch möglichen Übertragungsbereichs möglichst richtig wandeln. |
<zurück: Myroklopädie>
<zurück: Myro>