Difference between revisions of "Time Correct Hearing In Space"

(Raum und Hördistanz)
Line 145: Line 145:
  
 
[[Datei:IMG 6656 20.jpg]]
 
[[Datei:IMG 6656 20.jpg]]
 +
 +
=== Mehrkanal-Wiedergabe ===
 +
Ein wesentlicher Grund, warum es Mehrkanal-Wiedergabe gibt, besteht möglicherweise darin, dass die räumliche Wiedergabe von Stereo bisher als unbefriedigend wahrgenommen wurde. Fast alle Lautsprecher am Markt können Signale nicht zeitlich richtig reproduzieren, davon hängt aber eine wirklich überzeugende räumliche Darstellung ab. Es geht hierbei um die Abbildung der in den Sound-Tracks enthaltenen Rauminformationen. Gelingt es nicht, diese Rauminformationen wiederzugeben, sodass im Gehirn des Hörers ein plausibler Raumeindruck entsteht, dominiert der Raumeindruck des Wiedergaberaumes, des zweiten an der Reproduktion beteiligten Raumes. Kein Mensch kann sich zeitgleich in zwei verschiedenen Räumen aufhalten! Surround bringt gegenüber Stereo nur den Vorteil, dass Schall aus weiteren Richtungen geortet werden kann und somit eine Rundum-Ortung entsteht. Ohne die signal- / zeitrichtige Wiedergabe bleibt es aber ein eingeschränkter enger Raumeindruck mit vagabundierenden Schallereignissen und einem Nebel an Artefakten. Die Lautsprecher als Schallquelle sind immer noch ortbar. Um diese Ortbarkeit weiter zu reduzieren, bedient man sich zusätzlicher Reflexionen, wie sie zum Beispiel durch einen Dipol angeregt werden.
 +
Dadurch erhöht sich die Anzahl der Schallquellen und die Lautsprecher spielen bei der Ortung eine geringere Rolle.<br />
 +
Der große Nachteil ist allerdings, dass man die Dominanz des Hörraumes erheblich verstärkt, so dass der in der Aufnahme enthaltenen Raumeindruck zunehmend verloren geht. Ein Lautsprecher mit signal- / zeitrichtigem Verhalten ist als Schallquelle nicht ortbar, er ist praktisch durchsichtig, transparent. Somit ist es nicht erforderlich, sogar hinderlich, Raumreflexionen durch eine Dipol-Charakteristik zu erzeugen. Mit signal- / zeitrichtigen Lautsprechern hat man die Chance im Stereo- wie auch im Surround-Betrieb, den Ursprungs-Raumeindruck der Aufnahme weitgehend wiederzugeben.
 +
  
 
=== Die Probleme der Aufnahmeseite ===
 
=== Die Probleme der Aufnahmeseite ===

Revision as of 17:17, 23 February 2016

Raum und Hördistanz

Im Idealfall der perfekten Reproduktion eines aufgenommenen Schallereignisses gibt es keine Reflexionen durch einen Abhörraum. In der Praxis gibt es diesen Idealfall nicht. Das Zeitfenster für den raumunabhängigen Direktschall umfasst eine sehr kurze Zeitspanne von wenigen Millisekunden (Transienten).
Je nach Raumgegebenheiten wird der Anteil des "raumunabhängigen" Schalls (Direktschall) mehr oder weniger groß sein. Wir können die Raumakustik nur bedingt kompensieren. Der Kopf des Zuhörers befindet sich an einer bestimmten Stelle im Raum. Nur wenn wir ihn stets an exakt demselben Punkt im Raum platzieren, ergibt sich eine bescheidene Chance auf Erfolg. Sich beim entspannten Hören in den Sessel rutschen zu lassen oder den Sitzplatz zu wechseln, stellt aber alle Korrekturmaßnahmen auf den Kopf. Und wenn mehrere Personen gleichzeitig hören wollen? Man könnten noch am Lautsprecher basteln - aber für welche der unzähligen Raumakustiken? Es gibt nahezu genau so viele unterschiedliche Räume, wie es Wohnungen gibt. Was sind also häufige Gemeinsamkeiten in den Wohnräumen der Personengruppe, die einen bestimmten Lautsprecher kaufen? Eines haben alle Wohnräume gemeinsam: einen Fußboden. Dieser befindet sich bei Standboxen und bei Kompaktboxen auf einem Ständer sehr nah bei den akustischen Zentren. Daraus folgt: Lautsprecher sollten eine deutliche vertikale Bündelung aufweisen.
Das zweite, was die meisten Wohnräume gemeinsam haben: Es befinden sich mehrere Sitzmöglichkeiten im Raum. Diese sind nicht übereinander, sondern nebeneinander angeordnet. Daraus folgt: Lautsprecher sollten horizontal eine Bündelung aufweisen, die eine praxisgerechte, weite Abstrahlung ermöglicht. Zudem sollten die, vom Lautsprecher aus gesehen, seitlichen Wände eher abgeneigt und weit genug entfernt sein. Und die Sitzplätze sollten ebenfalls einen ausreichenden Abstand von reflektierenden Flächen haben. Besonders vorteilhaft ist ein dicker Teppich im Bereich zwischen den Lautsprechern und den Sitzplätzen. Falls ein Tisch vor den Sitzplätzen steht, dann sollte man dessen Fläche mit einer schallabsorbierenden Auflage versehen, Tischläufer usw. oder zahlreiche Objekte darauf stellen. Auch das kann helfen. Da jeder Hörraum sein eigenes Reflexionsverhalten aufweist, gibt es keine Allgemeingültigkeit für ein irgendwie definiertes Abstrahlverhalten von Lautsprechern. Der Lautsprecher sollte unter den direktschallrelevanten Abstrahlwinkeln eine möglichst exakt gewandelte Schallstruktur abstrahlen. Die direktschallrelevanten Abstrahlwinkel sind in der Praxis:

  • horizontal ca. 0 bis +/- 15°
  • vertikal ca. 0 bis +/- 5°

Wer sein eigenes Haus baut, kann versuchen, einen Architekten zu finden, der Räume so gestaltet, dass sie keine parallelen Wände aufweisen. Nur ein paar Grad Neigung zueinander bewirken Wunder. Nicht nur beim Lautsprecherhören, sondern jedes Geräusch schaukelt sich dann weniger auf.
Die am Hörort dort eintreffenden Schallstrukturen setzen sich aus den vom Raum unbeeinflussten (Ausnahme: tiefe Frequenzen) direkten Schallanteilen und den durch die Reflexion veränderten indirekten Schallanteilen zusammen. Der Tieftonbereich ist der Bereich, in dem sich die ersten Reflexionen bereits auf den Einschwingvorgang überlagern. Hier gibt es so gut wie keinen unbeeinflussten Direktschallanteil mehr. Die ersten Millisekunden des Direktschalls, die von Reflexionen unbeeinflusst unser Hörorgan erreichen, nehmen wir gleichermaßen wahr wie die eines natürlichen Schallereignisses. Impulse und Einschwingvorgänge gelangen, mit Ausnahme des tieffrequenten Bereichs, direkt zum Hörorgan. Für die Wandlung und Übertragung von Impulsen und Einschwingvorgängen ist folgerichtig eine Messung am Ort des Hörorgans vorzunehmen.

  • Bei geringem Hörabstand und großem Abstand der Lautsprecher von reflektierenden Flächen ist der Direktschall-Anteil groß.
  • Bei großem Hörabstand und geringem Abstand der Lautsprecher zu reflektierenden Flächen ist der Direktschall-Anteil gering.
  • Bei Nahfeldmonitoren ist demzufolge die Übertragungsfunktion in der Regel besonders im Direktschall, also in direkter Abstrahlrichtung, wichtig.
  • Bei Fernfeldmonitoren ist demzufolge die Übertragungsfunktion in der Regel auch außerhalb der direkten Albstrahlrichtung wichtig.

Die Deformationen der Schallwellen beim Reflexionsvorgang sind ebenso wie die Deformation durch inkohärente Schallwandler Fremdeinflüsse. Doch pflanzen sich Fehler in der Wiedergabe auch in der Raumakustik fort:

  • Raumreflexionen originalgetreu gewandelter Schallstrukturen klingen wie Reflexionen des Originals.
  • Raumreflexionen nicht originalgetreu gewandelter Schallstrukturen klingen nicht wie Reflexionen des Originals.
Datei:2380350990 3 g-4.jpg

Myro a priori 10.02

Für das Ausklingen von Instrumenten oder für Dauertöne spielt die Interaktion des Hörraumes mit dem vom Lautsprecher abgestrahlten Schall neben dem Direktschallanteil die entscheidende Rolle, denn insbesondere im eingeschwungenen Zustand bestimmt die Interaktion von Lautsprecher und Raum das Geschehen. Dazu sollte ein Lautsprecher natürlich eine möglichst gleichbleibende Qualität der Schallstruktur unter verschiedenen Abstrahlwinklen aufweisen. Die Orgel ist ein bestes Beispiel für ein Instrument mit starkem Pegel im eingeschwungenen Zustand und gerade dabei wirkt die Interaktion von Lautsprecher und Raum.

Letztendlich zählt die Schallstruktur, die am Hörorgan angelangt / wirksam wird. Der Direktschallanteil hat in Räumen, obwohl anteilmäßig geringer als der Indirektschall, eine größere Bedeutung, weil nur in ihm raumunabhängige Informationen über das Original enthalten sind. Das Erkennen und Orten der Schallereignisse innerhalb des Originals (Aufnahme), also auch das Erkennen des originalen Raumklanges ist nur im Direktschall eindeutig möglich. Die nächst größere Bedeutung haben die frühen, kurzzeitig folgenden, energiestarken, ersten Reflexionen. Alles, was mehrfach reflektiert und abgeschwächt unser Hörorgan erreicht, geht eher im allgemeinen Reflexions-Chaos unter und ist von nachrangiger Bedeutung.
Für die indirektschallrelevanten größeren Abstrahlwinkel ist ebenfalls die Qualität der vom Lautsprecher abgestrahlten Schallstruktur für den Eindruck der "Echtheit" ausschlaggebend.

Die Hörerfahrung mit signal- / zeitgenauen Lautsprechern ist: Durch die hervorragende Verständlichkeit und die Losgelöstheit des Klanges vom Lautsprecher gewinnt die Wahrnehmung der Originalinformation die Vorherrschaft über die Wahrnehmung des Abhörraumes. Der Direktschall ist für die Wahrnehmung des Originalklanges von eindeutig übergeordneter Bedeutung. Quantitativ lässt sich diese Erfahrung nicht begründen, denn der Direktschallanteil beträgt etwa nur ein Fünftel des Gesamtschalls.

Datei:GrandConcertEntwurf08 631x337.jpg

Myro Grand Concert II Designstudie

Für das Orten und das Erkennen einer in einer Aufnahme gespeicherten Schallstruktur gilt daher die folgende Rangfolge:

1. Direktschall (Transienten)

  • 30-fach (!) erhöhte Nervenfeuerungsrate vom Hörorgan zum Gehirn, somit maximale Aufmerksamkeit
  • maximale Dynamik / Amplitudenwerte
  • der einzige Schallanteil mit der Chance, Originalstrukturen zu übertragen

2. Erste frühe Reflexionen

  • die kürzeste Zeitfolge zum Direktschall
  • hoher Energiegehalt
  • kann Direktschall überlagern und verfremden

3. Mehrfach reflektierte Schallanteile

  • lange Zeitfolge auf den Direktschall
  • abgeschwächter Energiegehalt
  • starke Strukturverformungen durch die Reflexionsvorgänge (nichtlineare Absorbtion)

Bei allen Betrachtungen zählt zudem allein die Qualität der Schallstruktur. Erste frühe Reflexionen, welche die Einschwingvorgänge überlagern, stehen neben der starken Dynamikkompression bei manchen Aufnahmen ganz oben auf der Liste der Faktoren, die den Vorteil der signal- / zeitgenauen Wandlung relativieren können.


Direktschall

Der direkte Schallanteil erreicht den Hörer auf direktem Weg, ohne den Einfluss von Raumbegrenzungen oder Einrichtungsgegenständen, ohne Verdeckung, also praktisch bei direkter Sichtverbindung des Hörers zur Schallquelle. In diesem Schallanteil steckt die einzige unverfälschte Information über die Schallstruktur der Schallquelle und im Idealfall eines richtig wandelnden Lautsprechers bzw. über die Originalschallstruktur der Aufnahme. Nur im Direktschall ist die Einschwing- / Impulscharakteristik unverformt hörbar, und das ist die einzige Information, die uns eindeutig wahrnehmen lässt, von welcher Art und Charakteristik die Schallquelle ist und welche Dynamik und Zeitinformationen die Aufnahme beinhaltet. Nur hier hören wir wirklich, welcher Raumklang in der Aufnahme steckt. Der Direktschallanteil hat in Räumen, obwohl anteilmäßig geringer als der Indirektschall, darum eine größere Bedeutung. Das Erkennen und Orten der Schallereignisse innerhalb des Originals (Aufnahme), also auch das Erkennen des originalen Raumklanges, ist nur im Direktschall eindeutig möglich.
Lautsprecher, die diese Charakteristik nicht richtig reproduzieren, verwehren uns den Zugang zum anderen Aufnahmeraum. Hier verzerrt sich das Bild und verschieben sich die verschiedenen Instrumente je nach Einsatz und Tonhöhe.

Indirektschall

Der indirekte Schallanteil und damit der Klang des Hörraumes wird wesentlich bestimmt durch die Reflexionen und die Resonanzen.

Resonanzen

Wird eine Schallwelle zwischen parallelen Wänden hin und her reflektiert, so schwingt sie sich zu einer Resonanz auf. Der Abstand der Wände zueinander bestimmt dabei das Frequenzspektrum der Resonanz. Zwischen den Wänden entstehen je nach Frequenz Überhöhungen und Einbrüche im Frequenzbereich. An den Wänden haben die Grundresonanz und deren Vielfache ihr Druckmaximum. Das Klangbild wird hier ungleichmäßig überhöht, so ähnlich wie bei einer Transmissionlinebox.

Experiment 1:
Dazu brauch man entweder einen Frequenzgenerator oder eine Test-CD mit festen Testtönen im Bassbereich.
Beispiel: ein 50 Hz Ton.
Wir können nun den 50 Hz Ton über unsere Lautsprecher abspielen. Am besten den Player auf Repeat stellen.

Nach wenigen Bruchteilen einer Sekunde erreichen wir den eingeschwungenen Zustand im Raum und erleben die Wirkung von Raumresonanzen unmittelbar. Wenn wir uns nun bewegen, vor und zurück, nach oben und nach unten, einfach durch den Raum gehen, dann wissen wir, warum wir bisher dachten, dass der eine Lautsprecher viel und der andere Lautsprecher weniger Bass machte. Es gibt je nach Hörposition ein auf und ab im Schalldruck, an manchen Stellen bis nah an die vollständige Auslöschung. Den Lautsprecher kann man dabei nur mit allergrößter Mühe erkennen und das eher an Nebengeräuschen. Und bei jeder anderen Frequenz ergibt sich eine andere Verteilung der Druckbäuche und -knoten. (So nennt man die Überhöhungen und Einbrüche im Schalldruckverlauf.)

Reflexionen

Reflexionen finden in der Raumakustik besondere Bedeutung unter dem Aspekt der Nachhallzeiten. Auf Grund deren zeitlicher Verzögerung gegenüber dem Direktschall erhalten wir die Informationen, die wir benötigen, um die Geometrie des Hörraumes zu erkennen und die Schallquelle zu lokalisieren. In Bezug auf die Reproduktion einer Schallaufnahme durch Lautsprecher hat dies folgende Auswirkungen:

1. Wir hören zusätzlich zu den in der Aufnahme enthaltenen Rauminformationen den Raumeindruck eines zweiten Raumes, unseres Hörraumes, mit seiner typischen Charakteristik. Diese beiden Raumeindrücke überlagern sich und erzeugen eine mehr oder weniger ausgeprägte Unschärfe in der Wahrnehmung. Für diese ist es eine ungewohnte, nahezu absurde Situation. Wir sind es nicht gewohnt, in zwei unterschiedlichen Räumen gleichzeitig zu sein. Im wesentlichen sind es die Zeitdifferenzen der eintreffenden Transienten, die uns die gut verwertbaren Informationen über die zwei unterschiedlichen akustischen Umgebungen geben. Dadurch entsteht für uns der Eindruck, einen Raum im Raum zu hören. Je mehr und je energiereicher die Reflexionen des Abhörraumes, desto stärker ist der Eindruck, dass das Originalereignis der Aufnahme inklusive der enthaltenen Originalraumakustik in unserem Abhörraum spielt.


2. Die Lokalisation der Schallquelle, in diesem Fall des Lautsprechers, beschert uns neben den Musikern noch weitere Akteure. Erschwerend kommt hinzu, dass das bei fast allen Lautsprechern miserable Einschwingverhalten (100% Verzerrung der ersten Halbwellen) ebenfalls den Lautsprecher als Schallquelle ortbar macht.

Ein weiterer sehr bedeutender Faktor ist die Signalverformung durch den Reflexionsvorgang. Hier stellt sich die Frage: Wie klingen die Reflexionen meines Hörraumes? Trifft der von einem Lautsprecher abgestrahlte Schall auf ein Hindernis, z.B. ein Bücherregal, oder wird er von einer Fläche oder Wand reflektiert, so ändert sich dessen Druck-Zeit-Struktur (die Signalstruktur). Die Reflexion wird in ihrer Schallstruktur verformt, gleich so, als hätte sie ein Filter passiert. Gleiches gilt für diverse Wand- und Deckenmaterialien. Bei jeder Reflexion wird Schallenergie selektiv absorbiert und in Materialschwingung und Wärme umgewandelt. Die nichtlineare Absorbtion, die Transformation der kinetischen Energie des auftreffenden Schalls auf ein Objekt in Bewegungsenergie und Wärme im Objekt, wirkt sich auf die Schallwellenform der Reflexion aus. Zudem fügt die in Schwingung versetzte Reflexionsfläche durch verstärkte Eigenschwingung bei bestimmten Frequenzen Schallenergie hinzu bzw. absobiert Schallanteile durch Gegenphasigkeit der Eigenschwingung in Bezug zur auftreffenden Schallstruktur. Aufgrund der veränderten Schallstrukturen erhalten wir Informationen über die Beschaffenheit der reflektierenden Umgebung, in diesem Fall über die Akustik des Wiedergabe-Raumes. Wenn wir in einen Kleiderschrank hinein singen, klingt es anders zurück, als wenn wir in einer Dusche singen. Schall, der in Richtung einer reflektierenden Fläche abgestrahlt wird, müsste theoretisch so beschaffen sein, dass er nach der Reflexion mit dem originalen Signal der Aufnahme identisch ist. Das ist angesichts der Inhomogenität der akustischen Umgebung praktisch unmöglich. Zudem wäre es unnatürlich, da wir die akustische Umgebung damit ja nicht ausblenden und es gewohnt sind, dass Reflexionsschall durch den Reflexionsvorgang "gefiltert" wird. Wie hoch die Verständlichkeit von Reflexionsschall ist, hängt vom Reflexionsvorgang und in der Regel noch wesentlicher von der Qualität des auftreffenden Schalls ab. Also von der Qualität des vom Lautsprecher abgestrahlten Schalls.

Die Wellenform von indirektem, reflektiertem Schall ist abhängig von:
1. der vom Lautsprecher unter Winkel abgestrahlten Wellenform
2. von der Veränderung durch den Reflexionsvorgang (nichtlineare Schall-Absorbtion)

Datei:4743594441 4 g.jpg

Myro Magic Musica

Die Abstrahlwinkel bis ca. 30° sind für die frühen, energiestarken, besonders einflussreichen ersten Reflexionen maßgeblich. In einer schallharten Umgebung mit relativ geringer Filterung des Schalls an den Reflexionsflächen ist es vorteilhaft, wenn die vom Lautsprecher rundum abgestrahlten Schallstrukturen den originalen Schallstrukturen sehr ähnlich sind. Der Lautsprecher sollte also über weite Abstrahlwinkel korrekte Signale liefern, also korrekte Ergebnisse seiner Übertragungsfunktion. Die komplexe Übertragungsfunktion kann mit der Sprungmessung überprüft werden. Beim Vergleich verschiedener Lautsprecher ist also die Sprungmessung unter verschiedenen Winkeln zu vergleichen. Insbesondere Abstrahlwinkel, die naheliegende Reflexionswinkel auf Flächen betreffen, sind hier von besonders großer Bedeutung. Im Mittelhochtonbereich sind dies, aufgrund der natürlichen Richtcharakteristik höherer Töne, vor allem die nahen seitlichen Reflexionen und die des Fußbodens, als die einzige in allen Räumen praktisch konstante, immer vorkommende Fläche. Je nach Anwendungsvorgaben der Lautsprecher und dem sich daraus ergebenen statistischen Mittel der Entfernungen der Lautsprecher zu den Hörplätzen, sind entsprechende Abstrahlwinkel in Richtung Fußboden von besonderem Interesse. Die Reflexionswinkel des Fußbodens (in der Regel bei der halben Entfernung des Lautsprechers von Hörplatz) sind raumakustisch besonders relevant. Daher wird an diesen Stellen gerne ein möglichst dicker Teppich platziert.

Fazit: Reflektierter Schall beinhaltet nicht mehr die gleiche Schallstruktur wie der Direktschall und ist somit viel schwerer zu verstehen.
Der indirekte Schallanteil gibt uns viele Eindrücke über die Charakteristik unseres Hörraumes. Auf Grund unserer Hörerfahrung erkennen wir sehr deutlich, ob wir in unserem Wohnzimmer, im Keller oder in der Dusche Musik hören. Je höher also der indirekte Schallanteil, desto mehr passiert alles in unserem Raum und desto schlechter gelingt die Reproduktion des Originalklanges.


Experiment 2:
Um der wahren Bedeutung des Reflexionsschalls auf die Spur zu kommen, führen wir folgenden Versuch durch. Die zu vergleichenden Lautsprecher lässt man vom selben Platz aus, mit der Rückseite des Lautsprechers zum Hörer gewandt, in den Raum strahlen und vergleicht die Qualität des Hörerlebnisses. Wer möchte, kann zwischen Lautsprecherrückwand und Hörplatz einen Schallabsorber platzieren.
Der dabei hörbare Klangeindruck rückt das "Abstrahl-Weltbild" zurecht.


Zeitversatz
Folgt eine Reflexion kurzzeitig, extrem schnell dem direkten Schall, so ordnen wir diese Sekundärschallquelle in unserer Wahrnehmung eher der Ursprungs-Schallquelle zu. Jedoch verschwimmt dabei die Ortung etwas, so dass der Schall aus einem breiteren Bereich zu kommen scheint. In Bezug auf unsere Vorstellung der Positionierung von Musikern innerhalb eines Aufnahme-Raumes kommt es dabei zu einer Unschärfe der Lokalisation. Die Raumabbildung wirkt zudem breiter und verliert an Tiefenstaffelung.
Später eintreffende Reflexionen werden vorrangig dem Raumempfinden des eigenen Hörraumes zugeordnet.


Die erste Überlagerung mit dem Direktschall
Grundsätzlich überlagert sich der reflektierte Schall mit einem entsprechenden Zeitversatz dem Direktschall. Dabei ergeben sich durch Phasenverschiebungen Additionen und Subtraktionen. Der Frequenzgang wird stark wellig, so ähnlich wie bei kantigen wenig abgerundeten Lautsprechergehäusen. Dieses Phänomen wirkt sich im Hörraum zunehmend stärker aus, je tiefer die vom Lautsprecher abgestrahlte Frequenz ist. Tiefe Frequenzen werden eher breit abgestrahlt und beeinflussen demzufolge stärker das Reflexionsgeschehen.
Eine nahezu dramatische Auswirkung haben Reflexionen, die mit dem Einschwingvorgang interferieren (sich überlagern). Dies geschieht besonders häufig im Tiefton- und Grundtonbereich, da die ersten Halbwellen des Einschwingvorganges einen längeren Zeitraum zur Entstehung brauchen (Hz = Schwingungen pro Sekunde) als bei hohen Frequenzen. Dramatisch ist die Auswirkung deshalb, weil durch die Deformation der Einschwingvorgänge wesentliche Informationen über das Original-Klanggeschehen verzerrt werden.

Experiment 3:
Wir brauchen eine CD mit Rauschen, am besten mit Rosa Rauschen, oder einen Rauschgenerator. Zur Not hilft auch ein Radio ohne Antenne!
Dann schließen wir nur einen Lautsprecher an und bitten einen Freund, eine Freundin oder die Nachbarin, uns zu helfen. Der helfenden Person drücken wir nun einen etwas größeren, flachen Gegenstand in die Hände, z.B. Regalboden, Weltatlas o.ä., und stellen sie neben den Lautsprecher.
Nachdem wir es uns im Sessel gemütlich gemacht haben, bitten wir nun unsere/n Helfer/in, den flachen Gegenstand als Schallreflektor einzusetzen, sich langsam dem Lautsprecher zu nähern, sich wieder zu entfernen und dabei den Reflektor in verschiedenen Winkeln zum Lautsprecher zu positionieren.

Dieser Versuch macht unmittelbar und praktisch erlebbar, wie reflektierende Gegenstände oder Flächen in der Nähe von Schallquellen wirken.


Datei:IMG 6656 20.jpg

Mehrkanal-Wiedergabe

Ein wesentlicher Grund, warum es Mehrkanal-Wiedergabe gibt, besteht möglicherweise darin, dass die räumliche Wiedergabe von Stereo bisher als unbefriedigend wahrgenommen wurde. Fast alle Lautsprecher am Markt können Signale nicht zeitlich richtig reproduzieren, davon hängt aber eine wirklich überzeugende räumliche Darstellung ab. Es geht hierbei um die Abbildung der in den Sound-Tracks enthaltenen Rauminformationen. Gelingt es nicht, diese Rauminformationen wiederzugeben, sodass im Gehirn des Hörers ein plausibler Raumeindruck entsteht, dominiert der Raumeindruck des Wiedergaberaumes, des zweiten an der Reproduktion beteiligten Raumes. Kein Mensch kann sich zeitgleich in zwei verschiedenen Räumen aufhalten! Surround bringt gegenüber Stereo nur den Vorteil, dass Schall aus weiteren Richtungen geortet werden kann und somit eine Rundum-Ortung entsteht. Ohne die signal- / zeitrichtige Wiedergabe bleibt es aber ein eingeschränkter enger Raumeindruck mit vagabundierenden Schallereignissen und einem Nebel an Artefakten. Die Lautsprecher als Schallquelle sind immer noch ortbar. Um diese Ortbarkeit weiter zu reduzieren, bedient man sich zusätzlicher Reflexionen, wie sie zum Beispiel durch einen Dipol angeregt werden. Dadurch erhöht sich die Anzahl der Schallquellen und die Lautsprecher spielen bei der Ortung eine geringere Rolle.
Der große Nachteil ist allerdings, dass man die Dominanz des Hörraumes erheblich verstärkt, so dass der in der Aufnahme enthaltenen Raumeindruck zunehmend verloren geht. Ein Lautsprecher mit signal- / zeitrichtigem Verhalten ist als Schallquelle nicht ortbar, er ist praktisch durchsichtig, transparent. Somit ist es nicht erforderlich, sogar hinderlich, Raumreflexionen durch eine Dipol-Charakteristik zu erzeugen. Mit signal- / zeitrichtigen Lautsprechern hat man die Chance im Stereo- wie auch im Surround-Betrieb, den Ursprungs-Raumeindruck der Aufnahme weitgehend wiederzugeben.


Die Probleme der Aufnahmeseite

Hier wird das ganze Dilemma von Multimikrofonaufnahmen deutlich: Laufzeitprobleme, Kammfiltereffekte, Intensitätsunterschiede usw. Je nach Wellenlänge der Schallwellen und in Abhängigkeit von Laufzeitdifferenzen entstehen völlig chaotische Überlagerungen, Additionen und Subtraktionen von Schallwellen. Das Ergebnis ist ein Kunstprodukt. Ab einer gewissen Laufzeitdifferenz und dem damit verbundenen großen Pegelunterschied werden die Überlagerungen von Schallanteilen unproblematischer und vom Gehör eher als Raumklang wahrgenommen. Hierbei geht es aber um viele Meter Streckendifferenz. Die Transienten werden z.B. bei Schlagzeugaufnahmen allerdings regelmäßig verzerrt und die ursprüngliche Impulsdynamik wird geschwächt. Das beschriebene gilt prinzipiell für alle Aufnahmen mit mehr als einem Mikrofon. Bei der Wiedergabe über Lautsprecher tritt diese Problematik anschließend gleich zweimal auf.

1. Stereophonie: Selbst wenn der Zuhörer exakt in der Mitte (millimetergenau gleicher Abstand zu den LS) sitzt, seine beiden Ohren sind es nicht. Wenn wir also z.B. die Hauptinterpreten über beide Lautsprecher gleich laut präsentiert bekommen, damit diese in der Mitte abgebildet werden, dann nimmt jedes unserer Ohren den Sänger zweimal, kurz aufeinanderfolgend, wahr. Die beiden Schallereignisse liegen zeitlich nah beieinander und werden somit als ein zusammengehörendes Ereignis wahrgenommen. Soweit so gut, wir hören einen Sänger und nicht zwei. Die zwei an jedem Ohr zeitversetzt eintreffenden Schallereignisse bilden aber ein sich überlagerndes und somit neues künstliches Schallgemisch. Unabhängig davon, wie unser Ohr kurzzeitversetzte Schallwellen wahrnimmt, wird diese Wahrnehmung eine andere sein als bei der originalen Schallstruktur.

2. Die Lautsprecher selbst: Wenn Chassis innerhalb eines Lautsprechers verpolt sind oder die Phase sich innerhalb des Übertragungsverlaufs verschiebt, dann erhalten wir ebenfalls als Output ein künstliches Schallgemisch. Hinzu kommt die Abstrahlproblematik jedes Konzeptes, unabhängig davon, ob es sich um einen "Ein-Wege-" oder um einen "Mehr-Wege-" Lautsprecher handelt.

Die Gestaltung einer Übertragungsstrecke für Schallereignisse ist also äußerst komplex und kompromissbehaftet. Monomikrofonierung und Monowiedergabe mit einem signal- / zeitrichtig wandelnden Lautsprecher bieten die größte Annäherung an das Original. Das Mikrofon muss dabei in ausreichend großem Abstand von den Schallquellen positioniert werden, um nicht bestimmte Schallanteile der Instrumente zu bevorzugen. Alle anderen Komponenten der Übertragungsstrecke dürfen natürlich auch keine Signal- / Zeitfehler machen.


<zurück Myroklopädie>
<zurück Myro>