Difference between revisions of "The Nature Of Sounds"

 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
 
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|
 
|
  
Natürliche Schallereignisse gründen im Prinzip auf der Anregung und dem Ausklingen. Am Beispiel einer Gitarren-Saite kann man den Vorgang gut beschreiben. Die Anregung der Saite erfolgt durch die Bewegungsenergie eines Fingers oder eines Plektrons. Die resulierende Initialschwingung der Saite ist ein Geräusch, das im wesentlichen von der Anschlagcharakteristik (Geschwindigkeit, Intensität, Ort) bestimmt wird; der Vorgang startet mit der Transiente des Einschwingvorganges. Das ist die erste Halbwelle, die keine reine Sinushalbwelle darstellt sondern ein Frequenzgemisch mit vielen sehr schnellen (Hochfrequenten) Schallanteilen. Das sieht einer Sinushalbwelle jedoch zum verwechseln ähnlich. Es ist die schnelle Anstiegsflanke, erzeugt durch den Fingerschlag des Gitarristen. Wenn eine Saite gezupft oder ein Percussion-Instrument angeschlagen wird, kann die erste Druckwelle sowohl eine Unterdruck- als auch eine Überdruckwelle sein. Das kann man bei Musikproduktionen sehr gut sehen. Unmittelbar nach der Anregung zwingt das Feder-Masse-System der Saite die Schwingungsfrequenz in Richtung der Resonanzfrequenz der Saite. Erst nach zwei, drei Einschwingimpulsen schwingt die Gitarrenseite in Richtung der Resonanz der Seite aus, bis der Ton verklungen ist bzw. die Seite erneut angezupft wirdDie Schwingungsenergie wird zudem auf dem Gitarrenkorpus übertragen und regt dort weitere Resonanzen an. Die ersten Schallwellen des Vorganges erreichen dessen maximale Lautstärke, wohingegen die nachfolgenden Schwingungen in Richtung der Resonanz der Seite deutlich kleinere Amplituden (eine geringere Lautstärke) beinhalten.<br />
+
In principle, natural sound events are based on excitation and decay. The process can be well described using the example of a guitar string. The string is excited by the kinetic energy of a finger or a plectrum. The resulting initial vibration of the string is a sound that is essentially determined by the characteristics of the attack (speed, intensity, location); the process starts with the transient of the transient. This is the first half-wave, which is not a pure sine half-wave but a frequency mixture with many very fast (high-frequency) sound components. However, this looks confusingly similar to a sine half-wave. It is the fast rising edge generated by the guitarist's finger strumming. When a string is plucked or a percussion instrument is struck, the first pressure wave can be both a vacuum and an overpressure wave. This can be seen very well in musical productions. Immediately after excitation, the spring-mass system of the string forces the vibration frequency toward the resonant frequency of the string. Only after two or three transient impulses does the guitar side vibrate out in the direction of the resonance of the side until the note has faded away or the side is plucked againThe vibrational energy is also transmitted to the guitar body, where it excites further resonances. The first sound waves of the process reach its maximum volume, whereas the subsequent vibrations in the direction of the resonance of the side contain significantly smaller amplitudes (a lower volume).<br />
All dies repräsentiert in der Summe den charakteristischen Klang dieses Instruments und die Spielweise des Musikers. Je nach Dämpfung der Saite klingt die Schwingung schnell oder langsam aus. Die Einschwingvorgänge, auch Transienten genannt, beinhalten die höchsten Spitzenamplituden (Schallpegelmaxima) innerhalb der Musik. Sie sind vielfach lauter als das Ausklingen. Die Transienten haben für die auditive Wahrnehmung eine herausragende Bedeutung. Sie sind maßgeblich für die Erkennung und Ortung von Schallereignissen. Ein Dauerton lässt sich praktisch nicht lokalisieren. Erst wenn einem Dauerton Transienten hinzugefügt werden, auch von sehr geringer Intensität (wie z.B. bei Verzerrungen), ist eine Ortung möglich. Wir orten Schallereignisse anhand ihrer Einschwingvorgänge. Daher ist es verständlich, dass sich bei der Lautsprecherwiedergabe eine möglichst richtige Wandlung der Einschwingvorgänge derart stark auf die räumliche Abbildung auswirkt.<br />
+
All of this, taken together, represents the characteristic sound of this instrument and the musician's playing style. Depending on the damping of the string, the vibration will decay quickly or slowly. The following graphs show the vibration characteristics of a sound body with low damping (left) and high damping (right).
Jeder neue Ton, jeder Laut einer Stimme, jede Note beginnt mit einer Transiente. Musik ist ein Transienten-Feuerwerk. Das macht die korrekte Reproduktion der Einschwingvorgänge so wichtig. Dauertöne unterschiedlicher Instrumente unterscheiden sich oft so wenig, so dass eine Unterscheidung der Instrumente nicht gelingt. Die Charakteristik der Einschwingvorgänge ist essentiell für das Erkennen und Orten von Schallquellen. <br />
+
{| class="wikitable" border="1"
Ein elektroakustischen Wandler muss in jedem Fall Signale so wandeln, wie sie in der Musik tatsächlich vorkamen! Jeder Versuch, damit Verpolungen von Chassis zu rechtfertigen wäre unlogisch. Lautsprecher müssen jedes Eingangssignal, egal wie es aussieht, in die äquivalente Schalldruckstruktur wandeln. Die wenigen Lautsprecher weltweit, die derart wandeln können, klingen darum impulsdynamischer, reiner, räumlich richtiger und authentischer. Fachmännisch betrachtet gehört die richtige Wandlung von Transienten zu der richtigen Übertragungsfunktion eines Lautsprechers, aber die Realisation dieses Anspruchs ist "nicht so einfach".<br />
+
|-
Die besondere Bedeutung der Einschwingvorgänge gründet zudem darin, dass unter Wohnraumbedingungen nur ein sehr kurzes Zeitfenster existiert, in dem wir den musikalischen Inhalt der Tonaufzeichnungen ungestört hören können. In einem typischen Hörraum vergehen weniger als 2 ms, bis die ersten Reflexionen dem ungetrübten Hörgenuss ein Ende bereiten. Danach hören wir eine Interaktion von Direktschall und Indirektschall (Reflexionen).
+
|
 +
<gallery>
 +
sound example 2.jpg
 +
</gallery>
 +
|
 +
<gallery>
 +
sound sample 4.jpg
 +
</gallery>
 +
|}
 +
Both graphs show clear amplitude (volume) differences between the initial sounds (transients) and the decay (transient resonance). The transients are often louder than the decay. They contain the highest peak amplitudes (sound level maxima) within the music. The transients are of outstanding importance for auditory perception. They are decisive for the recognition and localization of sound events. A continuous tone can practically not be localized. Only when transients are added to a continuous tone, even of very low intensity (as in the case of distortion, for example), is localization possible. We locate sound events by their transients. It is therefore understandable that in loudspeaker reproduction the correct conversion of the transients has such a strong effect on the spatial imaging.<br />
 +
Every new tone, every sound of a voice, every note begins with a transient. Music is a transient firework. This makes the correct reproduction of transients so important. Transient sounds of different instruments often differ so little that it is impossible to distinguish between them. The characteristics of the transients are essential for recognizing and locating sound sources. <br />
 +
In any case, an electroacoustic transducer must convert signals as they actually occurred in the music! Any attempt to justify reversed polarity of drivers would be illogical. Loudspeakers must convert every input signal, no matter how it looks, into the equivalent sound pressure structure. The few loudspeakers in the world that can do this sound more dynamic, purer, spatially more correct and more authentic. From an expert point of view, the correct conversion of transients is part of the correct transfer function of a loudspeaker, but the realization of this claim is "not so easy".<br />
 +
The special importance of transients is also based on the fact that under living room conditions there is only a very short window of time in which we can hear the musical content of sound recordings undisturbed. In a typical listening room, less than 2 ms pass before the first reflections put an end to the undisturbed listening pleasure. After that we hear an interaction of direct sound and indirect sound (reflections).
 
|  
 
|  
[[Datei:Myro Ocean.jpg]]<br />
+
[[File:Myro Ocean.jpg]]<br />
''[[Myro Ocean]]''
+
''[[Myro Ocean]]'''
 
|}
 
|}
  
Line 18: Line 28:
 
|-
 
|-
 
|  
 
|  
'''Das folgende Zitat ist dem Buch "Hifi hören", Vogel Verlag, 1979, von Heinz Josef Nisius entnommen:'''
+
'''The following quote is taken from the book "Hifi hören", Vogel Verlag, 1979, by Heinz Josef Nisius:'''
  
''"Meß- und Hörvergleiche zeigen, dass das Impulsverhalten von Lautsprechern im Hinblick auf höchstmögliche Klangqualität gegebenenfalls wichtiger ist als ein auf ± 2 dB linearisierter Amplitudenfrequenzgang, gleichwohl dieser nicht unwichtig und auch eine Voraussetzung für gutes Impulsverhalten ist. Überspitzt formuliert kann man sagen, dass Impulstreue mit das wichtigste, zumindest das am schwersten zu erfüllende Qualitätskriterium eines Lautsprechers ist. Gleiches gilt auch für Tonabnehmer und Verstärker; beim Verstärker ist es allgemein anerkannt, beim Lautsprecher jedoch nicht.''<br />
+
''"Measuring and listening comparisons show that the impulse behaviour of loudspeakers is, if necessary, more important than an amplitude frequency response linearised to ± 2 dB with regard to the highest possible sound quality, although this is not unimportant and is also a prerequisite for good impulse behaviour. Exaggeratedly formulated one can say that impulse fidelity is one of the most important, at least the most difficult to fulfil quality criterion of a loudspeaker. The same applies to pickups and amplifiers; it is generally accepted for amplifiers, but not for loudspeakers.''<br />
  
''Dass das Impulsverhalten, also das Ein- und Ausschwingverhalten von Lautsprechern, von ausschlaggebender Bedeutung für seine Klangqualität ist, wird erkennbar, wenn man eine monaurale Klavier-Tonbandaufnahme „falsch herum“, von hinten nach vorn abspielt. Auch lang ausgehaltene Akkorde sind dann nicht mehr als Klavierklang zu identifizieren, obwohl, insgesamt gesehen, frequenzamplitudenstatistisch „alles stimmt“. Allerdings sind die zeitlichen Zusammenhänge von Frequenz und Amplitude durcheinandergeraten. Und das verfälscht den Klang."''
+
''That the impulse behaviour, i.e. the swing-in and swing-out behaviour of loudspeakers, is of decisive importance for its sound quality becomes apparent if one plays a monaural piano tape recording "the wrong way round", from back to front. Even long sustained chords are then no longer identifiable as piano sounds, although, seen as a whole, frequency amplitude statistically "everything is right". However, the temporal relationships between frequency and amplitude are confused. And that distorts the sound."'
 
|}
 
|}
  
Line 29: Line 39:
 
|  
 
|  
 
<gallery>
 
<gallery>
Klangbeispiel 3.jpg
+
sound sample 2.jpg
 
</gallery>
 
</gallery>
 
|  
 
|  
Das Signal im Bild links zeigt die Signalform, die Schwingungsfolge eines realen Musikereignisses in einer sehr einfachen und daher noch relativ komplexen, realitätsnahen Darstellung, in Form einer Oszilloskop-Darstellung.
+
'''Graphic 1'''<br />
Wir sehen die Druckschwankungen in ihrer zeitlichen Folge, also exakt das Ereignis, das dem Hören zugrunde liegt. So wird unser Gehör angeregt. Das Schallereignis beginnt mit wenigen Schwingungen sehr hoher Amplitude (Lautstärke) und schwingt mit geringer Amplitude aus. Die Reihenfolge der Schwingungen und deren Amplitude bilden die Basis für das "Verstehen" des Schallereignisses. Nur wenn die Schwingungen in dieser Form unser Trommelfell anregen, erkennen wir dieses Ereignis in seiner originalen Form.
+
<br />
Nur so können wir zum Beispiel Sprache erkennen und verstehen. Exakt diese Druckschwankungen in ihrer zeitlichen Folge sind es, die uns dieses Ereignis von dem nachfolgenden unterscheiden lassen.
+
 
Stellen wir nun dasselbe Ereignis in zeitlich umgekehrter Folge dar.
+
The signal in the picture on the left shows the waveform, the sequence of oscillations of a real musical event in a very simple and therefore still relatively complex, realistic representation, in the form of an oscilloscope display.
 +
We see the pressure fluctuations in their temporal sequence, i.e. exactly the event that is the basis for hearing.
 +
This is how our hearing is stimulated. It is precisely these pressure fluctuations in their temporal sequence that allow us to distinguish this event from the next one...
 +
|-
 +
|
 +
<gallery>
 +
Sound example 3.jpg
 +
</gallery>
 +
|
 +
'''Graphic 2'''<br />
 +
<br />
 +
 
 +
It is the sound of a struck percussion instrument. The sound event begins with a few vibrations of very high amplitude (volume) and decays with low amplitude.
 +
The sequence of the vibrations and their amplitude form the basis for the "understanding" of the sound event. Only when the oscillations excite our eardrum in this form do we recognize this event in its original form.
 +
Only in this way can we recognize and understand speech, for example. The illustration of a natural sound structure also clearly shows the enormous difference in volume between the transients and the subsequent oscillations. The transients are many times louder.
 
|-
 
|-
 
|
 
|
 
<gallery>
 
<gallery>
Klangbeispiel 3 gespiegelt.jpg  
+
Sound example 3 mirrored.jpg  
 
</gallery>
 
</gallery>
 
|
 
|
Nehmen wir an, die Graphik oben wäre die Schwingungsstruktur des Wortes XAMBOO. Dann würde die Schwingungstruktur der Graphik links dem Wort OOBMAX entsprechen. Beide enthalten dieselben Buchstaben, hören sich aber völlig unterschiedlich an. <br />
+
'''Graphic 3'''<br />
Ein anderes Beispiel ist ein digitaler Code. Wenn die Graphik oben den Code 0011010111001101 enthalten würde, würde die Graphik links den Code 1011001110101100 darstellen. Es ist auch klar, dass dies ein völlig anderes Ergebnis wäre. Es ist ein eindeutiger Beweis, dass wir zum "Verstehen" von Schallereignissen zwingend deren exakte ZeitDruck-Struktur hören können müssen. Das ist die Basis für das Hören!<br />
+
This graph represents the same event in reverse chronological order.
 +
Let us assume that graphic 2 would be the oscillation structure of the word XAMBOO. Then the vibrational structure of graph 3 would correspond to the word OOBMAX. Both contain the same letters, but sound completely different. <br />
 +
Another example is a digital code. If the graph above contained the code 0011010111001101, the graph on the left would represent the code 1011001110101100. It is also clear that this would be a completely different result. It is clear evidence that in order to "understand" sound events, we must necessarily be able to hear their exact time-pressure structure. This is the basis for hearing!<br />
  
''Mathematische Analysen''<br />
+
''Mathematical Analyses''<br />
Beide Graphiken haben bezogen auf ihr Frequenzgemisch (äquivalent = Frequenzgang) exakt den selben Inhalt. Gleiches gilt für die Phasenlage, nur dass dabei das Vorzeichen wechselt. Die Phasenbeziehungen bleiben dieselben.
+
When we do an analysis of the signals, we get their spectral composition. Both signal responses are identical in terms of their spectral composition.
 +
They have exactly the same content in terms of their frequency mixture (equivalent = frequency response), so they would give the same diagram. However, they sound different.<br />
 +
The same applies to the phase relationship, except that the sign changes. The phase relations remain the same.
 
|}
 
|}
  
Stellen wir uns nun vor, Lautsprechermodell 1 liefert die Signalfolge der ersten Graphik und Lautsprechermodell 2 liefert die Signalfolge der zweiten Graphik. Beide Lautsprechermodelle hätten exakt denselben Frequenzgang.
+
Let us now imagine that speaker model 1 delivers the signal sequence of graph 1 and speaker model 2 delivers the signal sequence of graph 2. Both speaker models would have exactly the same frequency response.
*Lautsprecher 1 kann Schallereignisse leicht verständlich in ihrer originalen Form darbieten.
+
*Loudspeaker 1 can easily reproduce sound events in their original form.
*Lautsprecher 2 gibt Schallereignisse praktisch unverständlich wieder.
+
*Loudspeaker 2 reproduces sound events virtually unintelligibly.
  
Der Unterschied der Schwingungsfolgen beider Graphiken ist in Relation zu den Unterschieden, die Lautsprechermodelle im Vergleich aufzeigen, gering. Dennoch ist es dieser kleine Unterschied, der für uns ausreichend ist, um zwei deutlich unterschiedliche Schallereignisse zu hören.
+
The difference in the vibration sequences of graphs 1 and 2 is small in relation to the differences that loudspeaker models reveal in comparison. Nevertheless, it is this small difference that is sufficient for us to hear two distinctly different sound events.
  
  

Latest revision as of 15:01, 15 November 2016

In principle, natural sound events are based on excitation and decay. The process can be well described using the example of a guitar string. The string is excited by the kinetic energy of a finger or a plectrum. The resulting initial vibration of the string is a sound that is essentially determined by the characteristics of the attack (speed, intensity, location); the process starts with the transient of the transient. This is the first half-wave, which is not a pure sine half-wave but a frequency mixture with many very fast (high-frequency) sound components. However, this looks confusingly similar to a sine half-wave. It is the fast rising edge generated by the guitarist's finger strumming. When a string is plucked or a percussion instrument is struck, the first pressure wave can be both a vacuum and an overpressure wave. This can be seen very well in musical productions. Immediately after excitation, the spring-mass system of the string forces the vibration frequency toward the resonant frequency of the string. Only after two or three transient impulses does the guitar side vibrate out in the direction of the resonance of the side until the note has faded away or the side is plucked again. The vibrational energy is also transmitted to the guitar body, where it excites further resonances. The first sound waves of the process reach its maximum volume, whereas the subsequent vibrations in the direction of the resonance of the side contain significantly smaller amplitudes (a lower volume).
All of this, taken together, represents the characteristic sound of this instrument and the musician's playing style. Depending on the damping of the string, the vibration will decay quickly or slowly. The following graphs show the vibration characteristics of a sound body with low damping (left) and high damping (right).

Both graphs show clear amplitude (volume) differences between the initial sounds (transients) and the decay (transient resonance). The transients are often louder than the decay. They contain the highest peak amplitudes (sound level maxima) within the music. The transients are of outstanding importance for auditory perception. They are decisive for the recognition and localization of sound events. A continuous tone can practically not be localized. Only when transients are added to a continuous tone, even of very low intensity (as in the case of distortion, for example), is localization possible. We locate sound events by their transients. It is therefore understandable that in loudspeaker reproduction the correct conversion of the transients has such a strong effect on the spatial imaging.
Every new tone, every sound of a voice, every note begins with a transient. Music is a transient firework. This makes the correct reproduction of transients so important. Transient sounds of different instruments often differ so little that it is impossible to distinguish between them. The characteristics of the transients are essential for recognizing and locating sound sources.
In any case, an electroacoustic transducer must convert signals as they actually occurred in the music! Any attempt to justify reversed polarity of drivers would be illogical. Loudspeakers must convert every input signal, no matter how it looks, into the equivalent sound pressure structure. The few loudspeakers in the world that can do this sound more dynamic, purer, spatially more correct and more authentic. From an expert point of view, the correct conversion of transients is part of the correct transfer function of a loudspeaker, but the realization of this claim is "not so easy".
The special importance of transients is also based on the fact that under living room conditions there is only a very short window of time in which we can hear the musical content of sound recordings undisturbed. In a typical listening room, less than 2 ms pass before the first reflections put an end to the undisturbed listening pleasure. After that we hear an interaction of direct sound and indirect sound (reflections).

Myro Ocean.jpg
Myro Ocean'

The following quote is taken from the book "Hifi hören", Vogel Verlag, 1979, by Heinz Josef Nisius:

"Measuring and listening comparisons show that the impulse behaviour of loudspeakers is, if necessary, more important than an amplitude frequency response linearised to ± 2 dB with regard to the highest possible sound quality, although this is not unimportant and is also a prerequisite for good impulse behaviour. Exaggeratedly formulated one can say that impulse fidelity is one of the most important, at least the most difficult to fulfil quality criterion of a loudspeaker. The same applies to pickups and amplifiers; it is generally accepted for amplifiers, but not for loudspeakers.

That the impulse behaviour, i.e. the swing-in and swing-out behaviour of loudspeakers, is of decisive importance for its sound quality becomes apparent if one plays a monaural piano tape recording "the wrong way round", from back to front. Even long sustained chords are then no longer identifiable as piano sounds, although, seen as a whole, frequency amplitude statistically "everything is right". However, the temporal relationships between frequency and amplitude are confused. And that distorts the sound."'

Graphic 1

The signal in the picture on the left shows the waveform, the sequence of oscillations of a real musical event in a very simple and therefore still relatively complex, realistic representation, in the form of an oscilloscope display. We see the pressure fluctuations in their temporal sequence, i.e. exactly the event that is the basis for hearing. This is how our hearing is stimulated. It is precisely these pressure fluctuations in their temporal sequence that allow us to distinguish this event from the next one...

Graphic 2

It is the sound of a struck percussion instrument. The sound event begins with a few vibrations of very high amplitude (volume) and decays with low amplitude. The sequence of the vibrations and their amplitude form the basis for the "understanding" of the sound event. Only when the oscillations excite our eardrum in this form do we recognize this event in its original form. Only in this way can we recognize and understand speech, for example. The illustration of a natural sound structure also clearly shows the enormous difference in volume between the transients and the subsequent oscillations. The transients are many times louder.

Graphic 3
This graph represents the same event in reverse chronological order. Let us assume that graphic 2 would be the oscillation structure of the word XAMBOO. Then the vibrational structure of graph 3 would correspond to the word OOBMAX. Both contain the same letters, but sound completely different.
Another example is a digital code. If the graph above contained the code 0011010111001101, the graph on the left would represent the code 1011001110101100. It is also clear that this would be a completely different result. It is clear evidence that in order to "understand" sound events, we must necessarily be able to hear their exact time-pressure structure. This is the basis for hearing!

Mathematical Analyses
When we do an analysis of the signals, we get their spectral composition. Both signal responses are identical in terms of their spectral composition. They have exactly the same content in terms of their frequency mixture (equivalent = frequency response), so they would give the same diagram. However, they sound different.
The same applies to the phase relationship, except that the sign changes. The phase relations remain the same.

Let us now imagine that speaker model 1 delivers the signal sequence of graph 1 and speaker model 2 delivers the signal sequence of graph 2. Both speaker models would have exactly the same frequency response.

  • Loudspeaker 1 can easily reproduce sound events in their original form.
  • Loudspeaker 2 reproduces sound events virtually unintelligibly.

The difference in the vibration sequences of graphs 1 and 2 is small in relation to the differences that loudspeaker models reveal in comparison. Nevertheless, it is this small difference that is sufficient for us to hear two distinctly different sound events.


<zurück: Myroklopädie>
<zurück: Myro>