Difference between revisions of "What Does The Frequency Response Say?"

(Keine Beschreibung eines spezifischen Gerätes)
 
(28 intermediate revisions by 15 users not shown)
Line 1: Line 1:
 +
{{delete candidate}}
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|  
 
|  
Wir sind es gewohnt, Lautsprecher anhand von 2-D-Frequenzgang-Diagrammen zu beurteilen. Von allen Messwerten eines Lautsprechers wird der Frequenzgang am häufigsten dargestellt und bewertet. Er ist das Ergebnis einer Frequenz-Analyse des jeweils verwendeten Messsignals. Mitunter ist es die einzige von einem Hersteller bekannt gegebene Messung. Die zugrunde liegenden Annahmen lauten, vor allem dieser Frequenzgang sage etwas über den Klang aus und würde in der angegebenen Bandbreite der Musikwiedergabe auch zur Verfügung stehen, er sei zeitinvariant. Daher werden im folgenden mehrere Aspekte betrachtet, die sich mit den Aussagen, welche einem Frequenzgang zugeschrieben werden, auseinandersetzen.
+
We are used to evaluating loudspeakers using 2-D frequency response diagrams. Of all the measurements of a loudspeaker, the frequency response is the one most often displayed and evaluated. It is the result of a frequency analysis of the respective measurement signal used and sometimes it is the only measurement announced by a manufacturer. This is based on the erroneous assumption that the sound pressure frequency response of a loudspeaker provides exhaustive information about its acoustic properties and is also available in the specified bandwidth of music reproduction, that it is time-invariant. But this is exactly not the case. There are said to be people who are so bold as to draw conclusions about the acoustic qualities of a loudspeaker from its sound pressure frequency response alone. But even the three-dimensional decay spectrum, by adding the time axis, reveals things that can at best be guessed at from the amplitude frequency response. Therefore, several aspects will be considered in the following, which deal with the statements attributed to a frequency response.
  
==== Bildung einer Schallsumme ====
+
=== Formation of a sound sum ===
''Alle'' Parameter (z.B. die Gruppenlaufzeit, linearer Amplituden-Frequenzgang und weitere) sind für die Signalbildung, das heißt für die Rekonstruktion des Eingangssignals, wichtig. Jeder Parameter ist ein Teil des gesamten Wandlungsprozesses, kein ''einzelner'' Parameter kann ein Signal bilden. Entsprechend kann ein Amplitudenfrequenzgang keinen Klang darstellen. Man kann einzelne Parameter daher nicht herausnehmen und deren Bedeutung bewerten. <br />
+
''All'' parameters (e.g., the group delay, linear amplitude frequency response, and others) are important for signal formation, that is, for reconstruction of the input signal. Each parameter is a part of the whole conversion process, no ''single'' parameter can form a signal. Accordingly, an amplitude frequency response cannot represent a sound. Therefore, one cannot take out individual parameters and evaluate their importance. <br />
Der Amplitudenfrequenzgang eines Lautsprechers setzt sich aus den Parametern Frequenz und Lautstärke zusammen. Als Betrachter sehen wir, wie laut der Lautsprecher bei verschiedenen Frequenzen ist. Die Signalformen, aus denen der Amplitudenfrequenzgang errechnet wurde, sind jedoch nicht erkennbar. Wir sehen nicht, zu welchem Zeitpunkt eine Frequenz in der Schallantwort des Lautsprechers vorkommt. Wir sehen demzufolge auch nicht, wie die Schwingungsfolge der Schallantwort aussieht. Wie sich messtechnisch zeigen lässt, unterscheiden sich beim Einschwingen des Lautsprechers die ersten Halbwellen einer Sinusschwingung eindeutig von den nachfolgenden Schwingungen. Dies bildet sich im Frequenzgang jedoch nicht ab. Da wir aber diese Schwingungsfolge hören, haben wir keine Information über das Klangereignis, das hinter einem Frequenzgangdiagramm verborgen ist. Daher lassen nur Messungen, die das Ganze zeigen, auch eindeutige Rückschlüsse auf das Ganze zu.<br />
+
The amplitude frequency response of a loudspeaker is composed of the parameters frequency and volume. As an observer we see how loud the loudspeaker is at different frequencies. However, we cannot see the waveforms from which the amplitude frequency response was calculated. We do not see at what point in time a frequency occurs in the loudspeaker's sound response. Consequently, we also do not see what the oscillation sequence of the sound response looks like.  
 +
How much we miss when we only look at a loudspeaker in the frequency domain becomes clear when we consider that the representation of the loudspeaker frequency response only comes about due to a transformation (a mathematical operation). In reality, every sound transducer works in the ''time'' domain. The input (music) signal is a ''time'' dependent quantity, namely an electrical voltage with ''time'' varying amplitude, and the loudspeaker reacts to this with a diaphragm movement which is also a function of time - and ideally exactly proportional to the input signal. The diaphragm sets the surrounding air in vibration, and this air pressure vibration finally reaches our ear.
 +
<br />
 +
|
 +
[[File:P 100105.jpg]]<br />
 +
''[[Myro La Musica 2004]]''
 +
|}
  
 +
{| class="wikitable" border="1"
 +
|-
 
|  
 
|  
[[Datei:La_Musica2012.jpg]]<br />
+
=== The time component ===
''[[Myro La Musica 2012]]''
+
Sound events are changes in sound pressure ''over time.'' The very word ''change'' refers to the temporal progression. Sound is the time sequence of pressure intensities. Since we hear sound, we hear the ''time sequence'' of pressure intensities. We hear pressure time courses, never just the time relations or just the pressure values. Therefore, statements about hearing ''time-correctness'' are abstract and do not describe what is really heard. <br />
|}
+
The figure below shows a natural sound structure. The pressure amplitude is not a constant. It is audible only in its change, the inseparable coupling to the temporal sequence. There can be no "amplitude only" variation of a loudspeaker. Likewise, a temporal change is not possible without a change in the sound structure. Therefore, time correctness / linear phasing cannot be heard either. Since we hear sound, we hear the time sequence of pressure intensities (-amplitudes). As soon as a discussion is held about the audibility of inaudible, separate individual aspects, no knowledge will be gained from it.
  
==== Die Zeit-Komponente ====
+
[[File:GL.jpg]]
Schallereignisse sind Schalldruckänderungen ''über die Zeit.'' Das Wort "Änderung" verweist schon auf den zeitlichen Verlauf. Schall ist die zeitliche Folge von Druckintensitäten. Da wir Schall hören, hören wir die ''zeitliche Folge'' von Druckintensitäten. Wir hören Druck-Zeitverläufe, niemals nur die Zeitbeziehungen oder nur die Druckwerte. Deshalb sind Aussagen über das Hören von "Zeitrichtigkeit" abstrakt und beschreiben nicht das wirklich gehörte.
 
Ein Klang, eine Schallstruktur, ist eine zeitliche Folge von Druckintensitäten. Die Druckamplitude ist keine Konstante. Sie ist nur in ihrer Veränderung, der untrennbaren Koppelung an die zeitliche Folge, hörbar. Eine "nur amplitudenrichtige" Variante eines Lautsprechers kann es nicht geben. Ebenso ist eine zeitliche Veränderung ohne Änderung der Schallstruktur nicht möglich. Daher kann man Zeitrichtigkeit / Linearphasigkeit auch nicht hören. Da wir Schall hören, hören wir die zeitliche Folge von Druckintensitäten (-Amplituden). Sobald eine Diskussion über die Hörbarkeit unhörbarer, voneinander getrennter Einzelaspekte geführt wird, wird man keine Erkenntnis daraus ziehen können.
 
 
<br />
 
<br />
Für direkten wie auch für indirekten Schall (Raumreflexionen) gilt:
+
For direct as well as for indirect sound (room reflections) applies:
  
*Wir hören die Schallwellenform, die Schallstruktur.
+
*We hear the sound waveform, the sound structure.
*Wir hören keine Frequenzgänge.
+
*We do not hear frequency responses.
*Frequenzgänge an sich sind kein hörbares Ereignis.
+
Frequency responses in themselves are not an audible event.
  
Welche Aussagekraft hat also ein Frequenzgang-Diagramm?<br />
+
The figure also clearly shows the enormous difference in loudness of the transients compared to the subsequent oscillations. The transients are many times louder. In addition, the 30-fold increase in nerve firing rate, the drastically increased attention of the auditory sense, allows us to accurately pick out the transients even in a mixture of overlapping sound waves.<br />
Es hat nur eine rein mathematisch-theoretische Aussagekraft darüber, wie hoch der Anteil einer bestimmten Frequenz innerhalb eines Frequenzgemischs ist - mehr nicht. '''Daher können zwei vollkommen identische Frequenzgang-Diagramme von völlig unterschiedlich klingenden Lautsprechern stammen.'''
+
So what is the significance of a frequency response diagram?<br />
 +
It has only a purely mathematical-theoretical significance about how high the proportion of a certain frequency is within a frequency mixture - nothing more. '''Therefore, two completely identical frequency response diagrams can come from completely different sounding speakers.'''
 +
|}
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|  
 
|  
[[Datei:GrandConcertAMT2540 1 50.jpg]]<br />
+
[[File:GrandConcertAMT2540 1 50.jpg]]<br />
 
''[[Myro Grand Concert II]]''
 
''[[Myro Grand Concert II]]''
  
 
|  
 
|  
Sinngemäß trifft dies auch auf die weiteren 2-D-Frequenzdiagramme zu:
+
This also applies to the other 2-D frequency diagrams:
  
*akustische Phase
+
*acoustic phase
*Impedanz
+
*impedance
*elektrische Phase
+
*electrical phase
*Abstrahlwinkel (Polardiagramm)
+
*radiation angle (polar diagram)
*Distortions (Klirr)
+
*distortions (distortion)
*Gruppenlaufzeit
+
group delay
  
Kein normaler Mensch ist jedoch in der Lage, anhand der Betrachtung diverser Diagramme im Kopf mathematisch in das Ursprungssignal zurück zu rechnen.<br />
+
However, no normal human being is able to mathematically calculate back to the original signal by looking at various diagrams in his head.<br />
 
 
Bei Musikaufnahmen werden die Signale in einer Oszilloskop-Darstellung angezeigt, damit der Tonmeister sie erkennen und bearbeiten kann. Oszilloskop-Darstellungen zeigen das Signal über den zeitlichen Verlauf, ''nicht'' aber dessen Frequenzgang. Als geübter Tonmeister hat man ein Auge dafür, welches Ereignis beispielsweise das Einsetzen eines Schlagzeugs darstellt. Zudem lassen sich diese Schwingungen einfach wieder abspielen und hörbar machen. Oszilloskop-Darstellungen repräsentieren im Gegensatz zum Frequenzgang ein hörbares Ereignis. Ohne sie sind Frequenzgang-Diagramme klanglich nicht interpretierbar. Auch diese Interpretation ist extrem schwierig. Im Gegensatz zu Amplituden-Frequenzgang-Diagrammen können zwei identische Oszilloskop-Darstellungen jedoch unmöglich zwei unterschiedliche Klänge darstellen.<br />
 
Klanginterpretationen anhand von Frequenzgangschrieben und Diskussionen darüber sind daher absurd und sinnfrei! Die klangliche Interpretation von Frequenzgangschrieben gehört jedoch seit Generationen zur HiFi-Kultur und selbst manche Entwickler kommen nicht darüber hinaus. Testredakteure machen regelmäßig Klangbewertungen anhand dieser Diagramme. Unzählige Diskussionen in Foren und andernorts werden darüber geführt. Nichts von all dem macht wirklich Sinn!<br />
 
Dies liegt in den Eigenschaften begründet, die in einer Frequenzgangmessung nicht erfasst werden.
 
  
 +
In music recordings, signals are displayed in an oscilloscope representation so that the sound engineer can recognize and process them. Oscilloscope plots show the signal over time, ''not'' but its frequency response. As a skilled sound engineer, you have an eye for what event, for example, the onset of a drum kit represents. Moreover, these oscillations can be easily played back and made audible. Oscilloscope plots, unlike frequency response, represent an audible event. Without them, frequency response diagrams are impossible to interpret sonically. This interpretation is also extremely difficult. Unlike amplitude-frequency response diagrams, however, two identical oscilloscope representations cannot possibly represent two different sounds.<br />
 +
Sound interpretations based on frequency response diagrams and discussions about them are therefore absurd and pointless! However, the sonic interpretation of frequency response diagrams has been part of hi-fi culture for generations, and even some developers can't get beyond it. Test editors regularly make sound evaluations based on these diagrams. Countless discussions in forums and elsewhere are held about them. None of this really makes sense!<br />
 +
This is due to the characteristics that are not captured in a frequency response measurement.
 
|}
 
|}
  
==== Frequenzgangmessung ====
+
Since frequency response measurements focus on amplitude values of the steady state, which only include transient processes to a small extent, they unfortunately say little about the sound of a loudspeaker and the sound of the resulting room reflections. Beyond the frequency response measurements the question arises: What is actually hidden behind a frequency response? A linear frequency response can be obtained even from a loudspeaker that doesn't reproduce a single signal cleanly.
Bei einer Frequenzgangmessung wird dem Lautsprecher in der Regel ein Messsignal zugeführt, das mindestens die vorab eingestellte Frequenzbandbreite umfasst. Mit Hilfe eines entweder fest voreingestellten oder selbst festzulegenden Mitlauf-Filters wird das jeweils auszuwertende Segment des Messsignals bestimmt. (Das ist ungefähr so, als würde man aus dem Fenster auf einen vorbeifahrenden Zug schauen.)
+
As can be shown by measurement, the first half waves of a sinus oscillation clearly differ from the following oscillations. However, this is not reflected in the frequency response. But since we hear this sequence of oscillations, we have no information about the sound event that is hidden behind a frequency response diagram. Therefore, only measurements that show the whole also allow unambiguous conclusions to be drawn about the whole.<br />
Die erforderliche mathematische Auswertung bezieht sich dabei auf den während des Messvorgangs eingeschwungenen Zustand des Lautsprechers.
 
Die berechneten Amplitudenwerte und deren Frequenzzuordnung beziehen sich bei Messungen dieser Art auf den "eingeschwungenen Zustand".
 
Die innerhalb des Messfensters vorliegende Schalldruckstruktur wird dabei quantitativ bewertet, in Amplitudenwerte umgerechnet und den Frequenzen zugeordnet. Dabei geht die eigentliche Schalldruckstruktur des vom Lautsprecher abgestrahlten Schalls verloren. Der Faktor Zeit wird bei Frequenzgangmessungen ausgeschlossen. Das Messfenster umfasst bei tiefen Frequenzen einen größeren Zeitraum als bei hohen Frequenzen da eine tieffrequente Schallwelle eine längere Welle darstellt (weniger Schwingungen pro Sekunde, also mehr Zeit pro Schwingung).
 
Daher werden insbesondere Raumreflexionen bei tieferen Frequenzen, und in Abhängigkeit von der Nähe der Reflexionsfläche, innerhalb des Messfensters ebenfalls erfasst. (Das ist dann ungefähr so, als würde ein LKW vor unserem Fenster vorbeifahren während der Zug vorbeifährt.)
 
Im Frequenzgang sieht man daher zunehmend bei tieferen Frequenzen entsprechende Welligkeiten.<br />
 
Eine Frequenzgangmessung ist daher nichts weiter als eine Schallamplitudensammlung mit Frequenzzuordnung.
 
Deren Grundlage, die Schalldruckstruktur des vom Lautsprecher abgestrahlten Schalls, ist dabei für den Betrachter nicht erkennbar.
 
<br />
 
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
|  
+
|
  
Messdiagramme sind dafür da, dem kundigen Experten Hinweise auf Übertragungseigenschaften zu geben und dienen als Werkzeug für die Suche nach Fehlern und deren Ursachen. Eine Anleitung dafür, wie man Fehler vermeidet und wie die Rekonstruktion des Ursprungssignals zu schaffen ist, ist darin nicht enthalten. Nur Oszilloskop-Darstellungen zeigen die komplexe Schwingungsstruktur, die Schalldruckschwankungen, die auch unser Hörorgan anregen.
+
=== Frequency response measurement ===
 +
With a frequency response measurement the loudspeaker is usually supplied with a measuring signal, which covers at least the frequency bandwidth set in advance. With the help of either a preset or a user-defined tracking filter, the segment of the measurement signal to be evaluated is determined. (This is roughly like looking out of a window at a passing train).
 +
The required mathematical evaluation is based on the steady state of the loudspeaker during the measurement process.
 +
The calculated amplitude values and their frequency assignment refer to the "steady state" for measurements of this type.
 +
The sound pressure structure within the measurement window is quantitatively evaluated, converted into amplitude values and assigned to the frequencies. The actual sound pressure structure of the sound radiated by the loudspeaker is lost in the process. The time factor is excluded from frequency response measurements. The measurement window covers a larger period of time at low frequencies than at high frequencies because a low-frequency sound wave is a longer wave (fewer oscillations per second, thus more time per oscillation).
 +
Therefore, especially room reflections at lower frequencies, and depending on the proximity of the reflection surface, are also detected within the measurement window. (This is then approximately as if a truck would pass in front of our window while the train is passing).
 +
In the frequency response, one therefore increasingly sees corresponding ripples at lower frequencies.<br />
 +
A frequency response measurement is therefore nothing more than a sound amplitude collection with frequency assignment.
 +
Its basis, the sound pressure structure of the sound radiated by the loudspeaker, is not recognizable to the observer.
  
Gleichwohl findet sich ein Phänomen in der Regel in jeder Teilansicht bzw. auf spezifische Art in jeder Messung wieder. Ein Beispiel:<br />
 
Die Membranresonanz eines Mitteltöners sehen wir:
 
*im Frequenzgangdiagramm als Pegelüberhöhung
 
*bei der akustischen Phasenmessung als eine Phasendrehung
 
*im Gruppenlaufzeitdiagramm ebenso als Schwankung auf der Zeitebene
 
*bei der elektrischen Phasenmessung auch als Phasenschwankung
 
*im Wasserfalldiagramm im Ausschwingen auch als Rippel
 
*in der Impulsantwort als Nachschwinger
 
*bei der Sinusmessung als Verformung
 
*in der Spungantwort als Spitze mit nachfolgendem Einbruch und anschließendem Ringing etc. etc..
 
  
Es ist und bleibt jedoch die Membranresonanz eines Mitteltöners.
+
=== The dynamic process ===
 +
The waveform of direct sound depends on the waveform radiated by the loudspeaker at an angle. In the course of the oscillation process (transient - decay) the loudspeaker passes through countless, very different frequency responses. This is caused by the different speed of the transient and decay processes of the individual drivers. The maximum amplitude, as it is visible in the transient frequency response, is not reached by all drivers at the same speed. Likewise, the decay after the signal is not equally fast. Each chassis has its own time constant with which it reacts to dynamic signals. If this time constant were identical for all drivers, then the frequency response would also be identical at all times - regardless of whether the drivers oscillate in and out quickly or slowly. However, it is almost impossible to find several drivers with the same time constant. Thus, over the time course of an incoming impulse, certain frequency ranges reach their maximum amplitude faster than others. However, these distortions in the summation of the overall signal are not reflected at all in the transient frequency response as it is published for loudspeakers. Even if the frequency response is very flat, the dynamic behaviour of the individual drivers can be inhomogeneous.  
  
==== Der dynamische Vorgang ====
+
'''Example:''' <br />
Die Wellenform von direktem Schall ist abhängig von der vom Lautsprecher unter Winkel abgestrahlten Wellenform. Im Verlauf des Schwingungsvorgangs (Einschwingen - Ausklingen) durchläuft der Lautsprecher unzählige, sehr unterschiedliche Frequenzgänge.  
+
If we imagine the spectral analysis of a color, for example the color ruby red, we get many colors in different weights. Each individual color does not allow us to draw any conclusion about the whole, not even the combination of two colors contained in the ruby red. If we now also imagine the whole dynamically, for example on the basis of a ruby-red flash of lightning, then we will obtain very different spectral analyses over the time course of the flash, from its beginning to its end, at the different points in time.<br />
  
'''Beipiel:''' <br />
+
If you pluck a guitar string and analyze the frequency spectrum over the time course, you will get a different spectrum at each point in time. If you were to pick one of these spectra and claim it represented the guitar sound, you would be wrong.
Wenn wir uns die Spektralanalyse einer Farbe vorstellen, beispielsweise der Farbe Rubinrot, dann erhalten wir viele Farben in unterschiedlicher Gewichtung. Jede einzelne Farbe lässt keinen Rückschluss auf das Ganze zu, auch nicht die Kombination von zwei im Rubinrot enthaltenen Farben.<br />
 
Wenn wir uns das Ganze nun auch noch dynamisch vorstellen, beispielsweise anhand eines rubinroten Blitzes, so werden wir über den Zeitverlauf des Blitzes, von seinem Anfang bis zu seinem Ende, zu den unterschiedlichen Zeitpunkten sehr unterschiedliche Spektralanalysen erhalten.<br />
 
  
Wenn man eine Gitarrensaite abzupft und das Frequenzspektrum über den zeitlichen Verlauf analysiert, so erhält man zu jedem Zeitpunkt ein anderes Spektrum. Würde man eines dieser Spektren herausnehmen und behaupten, es würde den Gitarrenklang repräsentieren, läge man daneben.
+
Accordingly, the bandwidth of a loudspeaker cannot be given by a frequency response ''from... to''. Two models, e.g. with cut-off frequency (-3 dB) at 35 Hz, can differ so much in their low bass response that this statement is reduced to what it actually is, namely completely worthless. In the manufacturers' data sheets one often finds information about the lower and upper cut-off frequency, sometimes without any indication of how many dB the sound pressure level has dropped at the given frequency, sometimes with an indication.
 +
Let's have a look at the specifications, which are seriously given with -3 dB. Without an indication of the high pass characteristics (12, 18, 24 dB/oct.) the indication of the lower cut-off frequency is of no real significance, as it is the only way to find out how steeply the sound pressure level drops:
 +
* 2nd order high pass = 12 dB/oct. means: one octave (halving the frequency) below the -3 dB point, the sound pressure has dropped by another 12 dB, i.e. at ≈ -15 dB.
 +
* 3rd order high pass = 18 dB/oct. means: one octave (halving of the frequency) below the -3 dB point, the sound pressure has dropped by a further 18 dB, i.e. at ≈ -21 dB.
 +
4th order high pass = 24 dB/oct. means: One octave (halving of the frequency) below the -3 dB point, the sound pressure has dropped by a further 24 dB, i.e. at ≈ -27 dB.
  
Die Bandbreite eines Lautsprechers lässt sich entsprechend auch nicht durch einen Frequenzgang ''von... bis'' angeben. Zwei Modelle, z.B. mit Grenzfrequenz (-3 dB) bei 35 Hz, können sich im Tiefbassverhalten derart stark unterscheiden, dass diese Aussage auf das reduziert wird, was sie eigentlich ist, nämlich völlig wertlos. Gleiches gilt für das obere Übertragungsende.<br />
+
''[[File:Genuin Pulse.jpg]]<br />
*Unter welchem Winkel werden welche Frequenzen wie wiedergegeben?<br />
 
*Täuscht eine Membranresonanz lediglich nutzbaren Übertragungsbereich vor?<br />
 
*Wie sieht die Tiefpasscharakteristik aus?
 
| [[Datei:Genuin Pulse.jpg]]<br />
 
 
''[[Genuin Pulse]]''
 
''[[Genuin Pulse]]''
 
|}
 
|}
 
Vergleicht man zum Beispiel zwei Lautsprecher mit ''gleicher'' -3 dB Grenzfrequenz und ''gleicher'' Hochpasscharakteristik, so können bei der Basswiedergabe Welten zwischen beiden liegen, denn der Unterschied liegt wie fast immer, wenn alles gleich erscheint, ''nicht'' im Frequenzgang, sondern im ''dynamischen'' Verhalten.<br />
 
 
Bei der Tieftonwiedergabe zählen:
 
*die Membranfläche (steif, unverformbar)
 
*die Membranschnelle
 
*die bewegte Masse
 
*der maximale lineare Hub
 
*die Linearität des Magnetsystems/Antriebssystems
 
*die Charakteristik der mechanischen Aufhängung
 
*das thermische Verhalten (thermisch bedingte Hochohmigkeit)
 
*die Kompressionen im System (unter dem Dustcap und Spider und innerhalb der Korbgeometrie)
 
*die Abstimmung der Parameter
 
*die Gehäuseabstimmung
 
*die Druckbelastung der Gehäusewände etc.
 
 
Und alles entscheidend, der Wiedergaberaum!
 
 
 
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
|  
 
|  
[[Datei:A priori Sub.jpg]]<br />
+
[[File:Rebell2.jpg]]<br />
''[[Myro a priori 10.01]] und [[Myro a priori Subwoofer]]''
+
''[[Myro Rebel 2]]''
 +
|
 +
For example, comparing two speakers with ''the same'' -3 dB cutoff frequency and ''the same'' high-pass characteristics, the two may be worlds apart in bass response, because the difference, as is almost always the case when everything seems the same, is ''not'' in frequency response, but in ''dynamic'' behavior.<br />
  
 +
In low frequency reproduction, what counts is:
 +
*the diaphragm area (stiff, non-deformable).
 +
the speed of the diaphragm
 +
*the moving mass
 +
the maximum linear excursion
 +
the linearity of the magnet system/drive system
 +
the characteristics of the mechanical suspension
 +
*the thermal behaviour (thermally induced high impedance)
 +
*the compressions in the system (under the dustcap and spider and within the basket geometry)
 +
*the tuning of the parameters
 +
*the enclosure tuning
 +
*the compressive loading of the enclosure walls etc.
  
== Der Phasengang ==
+
And all crucial, the playback room!
Die Darstellung des Frequenzgangs erfolgt gelegentlich auch als komplexer Frequenzgang, mit dem der Phasengang abgebildet wird.
 
Auch dieser Phasengang eines Lautsprechers beschreibt die Zeitbeziehungen im ''eingeschwungenen'' Zustand, nicht aber das Impulsverhalten. Die Zeitbeziehungen im Einschwingvorgang unterscheiden sich erheblich von den Zeitbeziehungen im eingeschwungenen Zustand. Selbst Lautsprecher mit invertierten Chassis können einen gleichmäßigen (eingeschwungenen) Phasengang aufweisen. Die Impulswiedergabe ist dabei trotzdem fehlerhaft.<br />
 
Phasenbetrachtungen setzen voraus, dass innerhalb des Messmodells Bezugspunkte definiert sind, die unter dem Aspekt zeitlicher Verschiebungen in Relation zueinander gesetzt werden. Die Auswertung bezieht sich dabei entweder auf einen eingeschwungenen Zustand oder auf einen quasi-statischen Zustand. Das erklärt auch, weshalb aus dem Phasengang keine Rückschlüsse auf das Ausgangssignal gezogen werden können. Insbesondere die ersten Halbwellen des Einschwingvorgangs, die in höchstem Maße die Ortung und die Identifikation eines Schallereignisses bestimmen, werden durch Phasenmessungen nicht dargestellt. Der Phasengang bezogen auf die ersten Halbwellen sähe ganz anders aus als der Phasengang bezogen auf nachfolgende Halbwellen. Es kann also keinen Phasengang geben, der allgemeingültig aussagefähig ist.
 
  
'''Beispiel:'''<br />
+
The same applies to the upper end of the transmission.
Die Klangcharakteristik von Instrumenten wird neben deren Einschwingvorgängen vor allem durch ein charakteristisches Spektrum von Grundtönen und deren Vielfachen (Obertönen) bestimmt. Liegt der Grundton beispielsweise bei 440 Hz und die Obertöne bei 880, 1.760, 3520, 7.040 Hz usw., so ergibt sich eine Schalldruckstruktur aus der Überlagerung dieser Wellen. Bei Verpolung des Hochtöners überlagert sich dieses Gemisch aus Grundton und Obertönen ganz anders und führt zu einer lautsprechertypischen, künstlichen Schallstruktur. Die Überlagerung einer richtig gepolten 440 Hz-Schwingung mit einer invertierten 7.040 Hz-Schwingung ergibt definitiv eine deutlich vom Original abweichende Summe. Im Phasengang sind all diese Phänomene aber unsichtbar!<br />
+
*At what angle are which frequencies reproduced and how?<br />
Der Modebegriff "Zeitrichtige Lautsprecher", der sich in der Regel auf einen halbwegs linearen Phasengang bezieht, sagt im Grunde gar nichts aus.
+
*Does a diaphragm resonance only pretend usable transmission range?<br />
 +
*What is the low pass characteristic?
  
== Der Klirrfaktor ==
+
=== The waterfall diagram ===
Für den Klirr, also die nichtlinearen Verzerrungen, gilt Gleiches wie für den Frequenzgang. Auf Grund der maximalen Empfindlichkeit des Hörsinns beim Einschwingen, bei den Transienten, sind Verzerrungen dieser von höchster Bedeutung. Messungen im eingeschwungenen Zustand, wie sie üblicherweise vorgenommen werden, können aber nur die Verzerrungen im eingeschwungenen Zustand zeigen. Die Amplituden der Transienten, zu Beginn eines Schallereignisses, sind jedoch vielfach höher als die eingeschwungenen Signale und besitzen daher einen ganz anderen Klirrfaktor!
+
This is a special measurement model to show the frequency response over time. It involves rectifying the original sound structure: The polarity, overpressure and underpressure, is equated, that is, the signs disappear and so does a substantial part of the information. And the amounts of the sound pressure values are represented by an envelope curve of the original sound structure of equal times. What remains of the statement is: In certain frequency ranges, increases or decreases of the ''amounts'' of the sound pressure values from the envelope curve of the rectified original sound structure show up in the course of time. This is exactly the significance. So you have to know exactly what the measurement conditions of a measurement procedure are in order to know what you can read from it.
Dieser Klirr lässt sich natürlich nur im Einschwingen messen (Sprungmessung).
 
  
 
|}
 
|}
  
== Equalizer - ein Medikament mit Nebenwirkungen ==
+
== The distortion factor ==
Wer einmal den Frequenzgang eines Lautsprechers im Raum weitgehend linearisiert, per automatischer Software oder per Hand, der wird feststellen, dass der Klang dabei keineswegs - wie theoretisch erwartet - das bestmögliche Ergebnis erreicht, sondern im Gegenteil: Die Musik wirkt energielos, gebremst, undynamisch und insgesamt enttäuschend. Hätte der lineare Frequenzgang die klangliche Bedeutung, welche ihm gemeinhin zugeschrieben wird, wäre dieses Ergebnis nicht erklärbar. Dabei kann es durchaus zu Verbesserungen führen, wenn man wenige ausgewählte Frequenzbereiche zurückhaltend korrigiert. In diesem Fall überwiegen die Vorteile. Ein tiefgehender Eingriff in das Signal wird jedoch immer zu einem negativen Ergebnis führen. Mit Kenntnis der voherigen Abschnitte findet man dafür Erklärungen. <br />
+
For the distortion, i.e. the ''non-linear'' distortions, the same applies as for the frequency response. Due to the maximum sensitivity of the auditory sense at the transient, at the transients, distortions of these are of highest importance. The loudest parts in music are the transients, which are also crucial for the detection and localization of sound events. However, distortion is normally measured in the steady state. In this case, the distortion values of loudspeakers are often already considerably high. Measurements in the steady state can only show the distortion in the steady state. The more half waves the measuring signal contains, the better the loudspeaker can follow it and the "distortion part" of the first half waves is statistically only slightly included in the result. The distortion of applause, for example, is not detected at all with the usual measurement methods! These sound events are very brief and do not exhibit a steady state; they are just noises. <br />
Ein Equalizer korrigiert nur den ''eingeschwungenen Frequenzgang''. In den unzähligen Frequenzgängen, die ein Lautsprecher bei den dynamischen Prozessen durchläuft, müssen dieselben Einstellungen jedoch keineswegs zu einer Linearisierung führen, sondern nur zu einer (unpassenden) Veränderung. Das dynamische Verhalten bleibt bei einem Equalizer vollkommen unberücksichtigt! Es ist auch nicht korrigierbar, da ein Equalizer zeitinvariante Einstellungen besitzt und seine Filterparameter nicht über die Zeit dynamisch anpasst. Verzerren Equalizer also die Impulse, welche die Schlüsselsignale für die Wiedergabe von Dynamik sind, so leidet der dynamische Eindruck.
+
Considering the dynamic signal structures of music, distortion values of conventional measurements are practically meaningless for listening. Prospect distortion values are without any practical significance. This is because the amplitudes of the transients, at the beginning of a sound event, are often higher than the steady-state signals and therefore have a different distortion factor.
 +
Of course, this distortion can only be measured during the transient (step measurement). Apart from that the distortion increases extremely depending on the non-linearity of the drive of the chassis. Only the dynamic distortion (impulse distortion) reflects the distortion in actual operation. It's not just a few percent, it's a completely different sound!
  
Ein parametrischer Equalizer ist ein Werkzeug. Er verändert nicht nur die Lautstärke innerhalb eines Frequenzbereichs, sondern greift komplexer in die Signalformen ein. Entscheidend ist immer die Form der Schallwellen. Die klangliche Änderung erfolgt also durch Änderungen der Wellenformen. Aus geänderten Wellenformen lassen sich wieder modelltheoretische Parameter ableiten.<br />
+
==== Linear Distortion ====
'''Modelltheoretische Parameter sind nicht die Ursache für ein Ereignis, sie sind eine theoretische Analyse dessen, was sich aufgrund anderer Ereignisse gebildet hat.'''<br />
+
In addition to distortion, there is also ''linear'' distortion of the signal due to, for example, the [[The acoustic centers of the drivers|acoustic centers of the drivers]]. These distortions also contribute significantly to the distortion of the amplitude and the waveform of the music signal, but they are not even captured by the distortion factor! The overall distortion of a loudspeaker is therefore greater than the distortion factor indicates. The amplitude errors are particularly large in the [[Transient|Swing-in]].  
Der Gedanke, dass einzelne Parameter die Ursache von etwas sind, ist falsch. Parameter entstehen aus der theoretischen Analyse von etwas bereits Bestehendem, Geschehenem. Der im Display des Equalizers angezeigte Frequenzgang ist nicht auf den Klang wirksam, es sind die Spannungsänderungen, die das Werkzeug Equalizer hervorruft.<br />
 
  
'''Beispiel:'''<br />
+
{| class="wikitable" border="1"
Wenn wir bei zwei Lautsprechern unterschiedlicher Übertragungsfunktion, also mit unterschiedlicher Signalwandlung, aber mit gleichem Frequenzgang (Amplitude), mit einem Equalizer Änderungen vornehmen, erhalten wir immer noch unterschiedlich klingende Lautsprecher. Wie gesagt, der Frequenzgang war vor der Änderung per Equalizer gleich und ist es danach auch noch. Dennoch klingen die Lautsprecher vorher und nachher unterschiedlich.<br />
+
|-
Der Frequenzgang zeigt nach der Änderung nur den modelltheoretischen Bezug von Amplitude zu Frequenz und zwar in einem zugrundeliegenden, aber nicht dargestellten Zeitraum.
+
|
  
 +
== Equalizer - a medicine with side effects ==
 +
Anyone who has ever linearised the frequency response of a loudspeaker in a room to a large extent, either by automatic software or by hand, will notice that the sound does not achieve the best possible result - as theoretically expected - but quite the opposite: the music seems lacking in energy, slowed down, undynamic and generally disappointing. If the linear frequency response had the tonal significance that is generally attributed to it, this result would be inexplicable. However, it can certainly lead to improvements if a few selected frequency ranges are corrected with restraint. In this case the advantages outweigh the disadvantages. However, a deep intervention into the signal will always lead to a negative result. With knowledge of the previous sections you will find explanations for this. <br />
 +
An equalizer corrects only the ''steady-state frequency response''. In the countless frequency responses that a loudspeaker goes through during the dynamic processes, the same settings do not have to lead to a linearization at all, but only to an (inappropriate) change. The dynamic behaviour is completely disregarded by an equalizer! It is also not correctable, since an equalizer has time-invariant settings and does not dynamically adjust its filter parameters over time. If equalizers distort the impulses, which are the key signals for the reproduction of dynamics, the dynamic impression suffers.
  
 +
A parametric equalizer is a tool. It does not only change the volume within a frequency range, but intervenes in a more complex way in the signal shapes. The decisive factor is always the shape of the sound waves. The tonal change is therefore made by changing the waveforms. From changed waveforms, model-theoretical parameters can be derived again.<br />
 +
'''Model-theoretic parameters are not the cause of an event, they are a theoretical analysis of what has formed as a result of other events.'''<br />
 +
The idea that individual parameters are the cause of something is false. Parameters are formed from a theoretical analysis of something that already exists, that has happened. The frequency response shown in the equalizer's display does not affect the sound, because it is the voltage changes that the equalizer tool produces.<br />
 +
 +
'''Example:'''<br />
 +
If we make changes with an equalizer to two speakers with different transfer functions, i.e. with different signal conversion, but with the same frequency response (amplitude), we still get different sounding speakers. As I said, the frequency response was the same before the change by equalizer and it still is after. Nevertheless, the speakers sound different before and after.<br />
 +
The frequency response after the change only shows the model theoretical relation of amplitude to frequency and that in an underlying but not shown time period.
 +
|
 +
[[File:La Musica2012.jpg]]<br />
 +
''[[Myro La Musica 2012]]''
 +
|}
  
 
<''zurück: [[Myroklopädie]]''><br />
 
<''zurück: [[Myroklopädie]]''><br />
 
<''zurück: [[Myro]]''>
 
<''zurück: [[Myro]]''>

Latest revision as of 13:00, 31 October 2020

Template:Delete candidate

We are used to evaluating loudspeakers using 2-D frequency response diagrams. Of all the measurements of a loudspeaker, the frequency response is the one most often displayed and evaluated. It is the result of a frequency analysis of the respective measurement signal used and sometimes it is the only measurement announced by a manufacturer. This is based on the erroneous assumption that the sound pressure frequency response of a loudspeaker provides exhaustive information about its acoustic properties and is also available in the specified bandwidth of music reproduction, that it is time-invariant. But this is exactly not the case. There are said to be people who are so bold as to draw conclusions about the acoustic qualities of a loudspeaker from its sound pressure frequency response alone. But even the three-dimensional decay spectrum, by adding the time axis, reveals things that can at best be guessed at from the amplitude frequency response. Therefore, several aspects will be considered in the following, which deal with the statements attributed to a frequency response.

Formation of a sound sum[edit]

All parameters (e.g., the group delay, linear amplitude frequency response, and others) are important for signal formation, that is, for reconstruction of the input signal. Each parameter is a part of the whole conversion process, no single parameter can form a signal. Accordingly, an amplitude frequency response cannot represent a sound. Therefore, one cannot take out individual parameters and evaluate their importance.
The amplitude frequency response of a loudspeaker is composed of the parameters frequency and volume. As an observer we see how loud the loudspeaker is at different frequencies. However, we cannot see the waveforms from which the amplitude frequency response was calculated. We do not see at what point in time a frequency occurs in the loudspeaker's sound response. Consequently, we also do not see what the oscillation sequence of the sound response looks like. How much we miss when we only look at a loudspeaker in the frequency domain becomes clear when we consider that the representation of the loudspeaker frequency response only comes about due to a transformation (a mathematical operation). In reality, every sound transducer works in the time domain. The input (music) signal is a time dependent quantity, namely an electrical voltage with time varying amplitude, and the loudspeaker reacts to this with a diaphragm movement which is also a function of time - and ideally exactly proportional to the input signal. The diaphragm sets the surrounding air in vibration, and this air pressure vibration finally reaches our ear.

P 100105.jpg
Myro La Musica 2004

The time component[edit]

Sound events are changes in sound pressure over time. The very word change refers to the temporal progression. Sound is the time sequence of pressure intensities. Since we hear sound, we hear the time sequence of pressure intensities. We hear pressure time courses, never just the time relations or just the pressure values. Therefore, statements about hearing time-correctness are abstract and do not describe what is really heard.
The figure below shows a natural sound structure. The pressure amplitude is not a constant. It is audible only in its change, the inseparable coupling to the temporal sequence. There can be no "amplitude only" variation of a loudspeaker. Likewise, a temporal change is not possible without a change in the sound structure. Therefore, time correctness / linear phasing cannot be heard either. Since we hear sound, we hear the time sequence of pressure intensities (-amplitudes). As soon as a discussion is held about the audibility of inaudible, separate individual aspects, no knowledge will be gained from it.

GL.jpg
For direct as well as for indirect sound (room reflections) applies:

  • We hear the sound waveform, the sound structure.
  • We do not hear frequency responses.

Frequency responses in themselves are not an audible event.

The figure also clearly shows the enormous difference in loudness of the transients compared to the subsequent oscillations. The transients are many times louder. In addition, the 30-fold increase in nerve firing rate, the drastically increased attention of the auditory sense, allows us to accurately pick out the transients even in a mixture of overlapping sound waves.
So what is the significance of a frequency response diagram?
It has only a purely mathematical-theoretical significance about how high the proportion of a certain frequency is within a frequency mixture - nothing more. Therefore, two completely identical frequency response diagrams can come from completely different sounding speakers.

GrandConcertAMT2540 1 50.jpg
Myro Grand Concert II

This also applies to the other 2-D frequency diagrams:

  • acoustic phase
  • impedance
  • electrical phase
  • radiation angle (polar diagram)
  • distortions (distortion)

group delay

However, no normal human being is able to mathematically calculate back to the original signal by looking at various diagrams in his head.

In music recordings, signals are displayed in an oscilloscope representation so that the sound engineer can recognize and process them. Oscilloscope plots show the signal over time, not but its frequency response. As a skilled sound engineer, you have an eye for what event, for example, the onset of a drum kit represents. Moreover, these oscillations can be easily played back and made audible. Oscilloscope plots, unlike frequency response, represent an audible event. Without them, frequency response diagrams are impossible to interpret sonically. This interpretation is also extremely difficult. Unlike amplitude-frequency response diagrams, however, two identical oscilloscope representations cannot possibly represent two different sounds.
Sound interpretations based on frequency response diagrams and discussions about them are therefore absurd and pointless! However, the sonic interpretation of frequency response diagrams has been part of hi-fi culture for generations, and even some developers can't get beyond it. Test editors regularly make sound evaluations based on these diagrams. Countless discussions in forums and elsewhere are held about them. None of this really makes sense!
This is due to the characteristics that are not captured in a frequency response measurement.

Since frequency response measurements focus on amplitude values of the steady state, which only include transient processes to a small extent, they unfortunately say little about the sound of a loudspeaker and the sound of the resulting room reflections. Beyond the frequency response measurements the question arises: What is actually hidden behind a frequency response? A linear frequency response can be obtained even from a loudspeaker that doesn't reproduce a single signal cleanly. As can be shown by measurement, the first half waves of a sinus oscillation clearly differ from the following oscillations. However, this is not reflected in the frequency response. But since we hear this sequence of oscillations, we have no information about the sound event that is hidden behind a frequency response diagram. Therefore, only measurements that show the whole also allow unambiguous conclusions to be drawn about the whole.

Frequency response measurement[edit]

With a frequency response measurement the loudspeaker is usually supplied with a measuring signal, which covers at least the frequency bandwidth set in advance. With the help of either a preset or a user-defined tracking filter, the segment of the measurement signal to be evaluated is determined. (This is roughly like looking out of a window at a passing train). The required mathematical evaluation is based on the steady state of the loudspeaker during the measurement process. The calculated amplitude values and their frequency assignment refer to the "steady state" for measurements of this type. The sound pressure structure within the measurement window is quantitatively evaluated, converted into amplitude values and assigned to the frequencies. The actual sound pressure structure of the sound radiated by the loudspeaker is lost in the process. The time factor is excluded from frequency response measurements. The measurement window covers a larger period of time at low frequencies than at high frequencies because a low-frequency sound wave is a longer wave (fewer oscillations per second, thus more time per oscillation). Therefore, especially room reflections at lower frequencies, and depending on the proximity of the reflection surface, are also detected within the measurement window. (This is then approximately as if a truck would pass in front of our window while the train is passing). In the frequency response, one therefore increasingly sees corresponding ripples at lower frequencies.
A frequency response measurement is therefore nothing more than a sound amplitude collection with frequency assignment. Its basis, the sound pressure structure of the sound radiated by the loudspeaker, is not recognizable to the observer.


The dynamic process[edit]

The waveform of direct sound depends on the waveform radiated by the loudspeaker at an angle. In the course of the oscillation process (transient - decay) the loudspeaker passes through countless, very different frequency responses. This is caused by the different speed of the transient and decay processes of the individual drivers. The maximum amplitude, as it is visible in the transient frequency response, is not reached by all drivers at the same speed. Likewise, the decay after the signal is not equally fast. Each chassis has its own time constant with which it reacts to dynamic signals. If this time constant were identical for all drivers, then the frequency response would also be identical at all times - regardless of whether the drivers oscillate in and out quickly or slowly. However, it is almost impossible to find several drivers with the same time constant. Thus, over the time course of an incoming impulse, certain frequency ranges reach their maximum amplitude faster than others. However, these distortions in the summation of the overall signal are not reflected at all in the transient frequency response as it is published for loudspeakers. Even if the frequency response is very flat, the dynamic behaviour of the individual drivers can be inhomogeneous.

Example:
If we imagine the spectral analysis of a color, for example the color ruby red, we get many colors in different weights. Each individual color does not allow us to draw any conclusion about the whole, not even the combination of two colors contained in the ruby red. If we now also imagine the whole dynamically, for example on the basis of a ruby-red flash of lightning, then we will obtain very different spectral analyses over the time course of the flash, from its beginning to its end, at the different points in time.

If you pluck a guitar string and analyze the frequency spectrum over the time course, you will get a different spectrum at each point in time. If you were to pick one of these spectra and claim it represented the guitar sound, you would be wrong.

Accordingly, the bandwidth of a loudspeaker cannot be given by a frequency response from... to. Two models, e.g. with cut-off frequency (-3 dB) at 35 Hz, can differ so much in their low bass response that this statement is reduced to what it actually is, namely completely worthless. In the manufacturers' data sheets one often finds information about the lower and upper cut-off frequency, sometimes without any indication of how many dB the sound pressure level has dropped at the given frequency, sometimes with an indication. Let's have a look at the specifications, which are seriously given with -3 dB. Without an indication of the high pass characteristics (12, 18, 24 dB/oct.) the indication of the lower cut-off frequency is of no real significance, as it is the only way to find out how steeply the sound pressure level drops:

  • 2nd order high pass = 12 dB/oct. means: one octave (halving the frequency) below the -3 dB point, the sound pressure has dropped by another 12 dB, i.e. at ≈ -15 dB.
  • 3rd order high pass = 18 dB/oct. means: one octave (halving of the frequency) below the -3 dB point, the sound pressure has dropped by a further 18 dB, i.e. at ≈ -21 dB.

4th order high pass = 24 dB/oct. means: One octave (halving of the frequency) below the -3 dB point, the sound pressure has dropped by a further 24 dB, i.e. at ≈ -27 dB.

Genuin Pulse.jpg
Genuin Pulse

Rebell2.jpg
Myro Rebel 2

For example, comparing two speakers with the same -3 dB cutoff frequency and the same high-pass characteristics, the two may be worlds apart in bass response, because the difference, as is almost always the case when everything seems the same, is not in frequency response, but in dynamic behavior.

In low frequency reproduction, what counts is:

  • the diaphragm area (stiff, non-deformable).

the speed of the diaphragm

  • the moving mass

the maximum linear excursion the linearity of the magnet system/drive system the characteristics of the mechanical suspension

  • the thermal behaviour (thermally induced high impedance)
  • the compressions in the system (under the dustcap and spider and within the basket geometry)
  • the tuning of the parameters
  • the enclosure tuning
  • the compressive loading of the enclosure walls etc.

And all crucial, the playback room!

The same applies to the upper end of the transmission.

  • At what angle are which frequencies reproduced and how?
  • Does a diaphragm resonance only pretend usable transmission range?
  • What is the low pass characteristic?

The waterfall diagram[edit]

This is a special measurement model to show the frequency response over time. It involves rectifying the original sound structure: The polarity, overpressure and underpressure, is equated, that is, the signs disappear and so does a substantial part of the information. And the amounts of the sound pressure values are represented by an envelope curve of the original sound structure of equal times. What remains of the statement is: In certain frequency ranges, increases or decreases of the amounts of the sound pressure values from the envelope curve of the rectified original sound structure show up in the course of time. This is exactly the significance. So you have to know exactly what the measurement conditions of a measurement procedure are in order to know what you can read from it.

The distortion factor[edit]

For the distortion, i.e. the non-linear distortions, the same applies as for the frequency response. Due to the maximum sensitivity of the auditory sense at the transient, at the transients, distortions of these are of highest importance. The loudest parts in music are the transients, which are also crucial for the detection and localization of sound events. However, distortion is normally measured in the steady state. In this case, the distortion values of loudspeakers are often already considerably high. Measurements in the steady state can only show the distortion in the steady state. The more half waves the measuring signal contains, the better the loudspeaker can follow it and the "distortion part" of the first half waves is statistically only slightly included in the result. The distortion of applause, for example, is not detected at all with the usual measurement methods! These sound events are very brief and do not exhibit a steady state; they are just noises.
Considering the dynamic signal structures of music, distortion values of conventional measurements are practically meaningless for listening. Prospect distortion values are without any practical significance. This is because the amplitudes of the transients, at the beginning of a sound event, are often higher than the steady-state signals and therefore have a different distortion factor. Of course, this distortion can only be measured during the transient (step measurement). Apart from that the distortion increases extremely depending on the non-linearity of the drive of the chassis. Only the dynamic distortion (impulse distortion) reflects the distortion in actual operation. It's not just a few percent, it's a completely different sound!

Linear Distortion[edit]

In addition to distortion, there is also linear distortion of the signal due to, for example, the acoustic centers of the drivers. These distortions also contribute significantly to the distortion of the amplitude and the waveform of the music signal, but they are not even captured by the distortion factor! The overall distortion of a loudspeaker is therefore greater than the distortion factor indicates. The amplitude errors are particularly large in the Swing-in.

Equalizer - a medicine with side effects[edit]

Anyone who has ever linearised the frequency response of a loudspeaker in a room to a large extent, either by automatic software or by hand, will notice that the sound does not achieve the best possible result - as theoretically expected - but quite the opposite: the music seems lacking in energy, slowed down, undynamic and generally disappointing. If the linear frequency response had the tonal significance that is generally attributed to it, this result would be inexplicable. However, it can certainly lead to improvements if a few selected frequency ranges are corrected with restraint. In this case the advantages outweigh the disadvantages. However, a deep intervention into the signal will always lead to a negative result. With knowledge of the previous sections you will find explanations for this.
An equalizer corrects only the steady-state frequency response. In the countless frequency responses that a loudspeaker goes through during the dynamic processes, the same settings do not have to lead to a linearization at all, but only to an (inappropriate) change. The dynamic behaviour is completely disregarded by an equalizer! It is also not correctable, since an equalizer has time-invariant settings and does not dynamically adjust its filter parameters over time. If equalizers distort the impulses, which are the key signals for the reproduction of dynamics, the dynamic impression suffers.

A parametric equalizer is a tool. It does not only change the volume within a frequency range, but intervenes in a more complex way in the signal shapes. The decisive factor is always the shape of the sound waves. The tonal change is therefore made by changing the waveforms. From changed waveforms, model-theoretical parameters can be derived again.
Model-theoretic parameters are not the cause of an event, they are a theoretical analysis of what has formed as a result of other events.
The idea that individual parameters are the cause of something is false. Parameters are formed from a theoretical analysis of something that already exists, that has happened. The frequency response shown in the equalizer's display does not affect the sound, because it is the voltage changes that the equalizer tool produces.

Example:
If we make changes with an equalizer to two speakers with different transfer functions, i.e. with different signal conversion, but with the same frequency response (amplitude), we still get different sounding speakers. As I said, the frequency response was the same before the change by equalizer and it still is after. Nevertheless, the speakers sound different before and after.
The frequency response after the change only shows the model theoretical relation of amplitude to frequency and that in an underlying but not shown time period.

La Musica2012.jpg
Myro La Musica 2012

<zurück: Myroklopädie>
<zurück: Myro>