Difference between revisions of "Consideration Of Swing Distortions"

(Das erste Beispiel)
(Keine Beschreibung eines spezifischen Gerätes, eher Werbung eines Herstellers. Gehört hier nicht rein)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
=== Das erste Beispiel ===
+
{{delete candidate}}
Welchen Einfluss hat die Sprungantwort auf die Verzerrung eines (Musik-)Signals?<br />
+
=== The first example ===
Die folgenden Beispiele sollen veranschaulichen, dass die Verzerrung eines Eingangssignals unmittelbar mit der Sprungantwort eines Lautsprechers zusammenhängt. Es besteht eine eindeutige Korrelation zwischen der Verzerrung der Sprungmessung und der Verzerrung aller anderen Signale / Klänge. Das Ohr hört Druckschwankungen in einer zeitlichen Folge. Manipuliert man die Zeitkomponente, ändert man die Signalstruktur. Und was man dann hört, sind immer die geänderten Druckschwankungen. Wir hören immer die Auswirkungen, wenn Druckwellen zeitverschoben werden. Begründung: Weil wir gar nichts anderes hören können als das!
+
What effect does the step response have on the distortion of a (music) signal?<br />
 +
The following examples will illustrate that the distortion of an input signal is directly related to the step response of a loudspeaker. There is a clear correlation between the distortion of the step response and the distortion of all other signals / sounds. The characteristic with which loudspeakers distort signals is evident in every signal shape, i.e. regardless of whether it is a square wave, a sine wave or a complex musical signal. The ear hears pressure fluctuations in a temporal sequence. If you manipulate the time component, you change the signal structure. And what you then hear is always the changed pressure fluctuations. We always hear the effects when pressure waves are time-shifted. Reasoning: Because that's all we can hear!
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
|[[Datei:Beispiel K step.jpg]]
+
|[[File:Beispiel K step.jpg]]
 
|
 
|
Gemessen wird ein Lautsprecher mit dieser Sprungantwort. Es handelt sich um einen Koaxiallautsprecher mit zusätzlichem Superhochtöner. Der Superhochtöner und der Tiefmitteltöner sind gleich gepolt. Der Hochtöner innerhalb des Koaxiallautsprechers ist invertiert. Die erste Spitze nach oben stammt vom Superhochtöner.<br />
+
A loudspeaker with this step response is measured. It is a coaxial loudspeaker with an additional super tweeter. The super tweeter and the bass-midrange driver are polarized the same. The tweeter within the coaxial speaker is inverted. The first tip up is from the super tweeter.<br />
''(Anmerkung: Sogenannte "Superhochtöner" oder angekoppelte Bässe zerstören die Eigenschaft der Punktschallquelle, sofern diese nicht schon durch Partialschwingungen eingeschränkt wird.)''<br />
+
''(Note: So-called "super-tweeters" or coupled basses destroy the characteristic of the point source, unless it is already limited by partial oscillations)''.<br />
  
Mit dem Klirrfaktor sind diese Einschwingverzerrungen ''nicht'' zu beschreiben und entsprechende Messungen erfassen das Problem ''nicht''.
+
With the distortion factor these transient distortions are ''not'' to describe and corresponding measurements capture the problem ''not''.
  
 
|-
 
|-
| [[Datei:DM 0,5 sinus.jpg]]
+
| [[File:DM 0,5 sinus.jpg]]
| Links sehen wir das Testsignal einer Sinushalbwelle in zweidimensionaler Darstellung. Die Tonhöhe ist bei einer einzelnen Halbwelle eindeutig hörbar, d.h. verschiebt man die Basisfrequenz oder ändert man die Frequenz charakteristischer Einbrüche und Spitzen, wandert die Wahrnehmung mit.<br />
+
| On the left we see the test signal of a sine half-wave in two dimensions. The pitch is clearly audible for a single half-wave, i.e. if you shift the base frequency or change the frequency of characteristic dips and peaks, the perception moves with it.<br />
Unten sehen wir die dazugehörige Schallantwort des Beispiellautsprechers. Die Messfrequenz ist 3521 Hz.
+
Below we see the corresponding sound response of the example speaker. The measurement frequency is 3521 Hz.
 
|-
 
|-
| [[Datei:Beispiel K 0,5 sinus 3521 Hz.jpg]]
+
[[File:Beispiel K 0,5 sinus 3521 Hz.jpg]]
| Bei dieser Messung mit einer Sinushalbwelle sind alle (linearen und nichtlinearen) Verzerrungen enthalten. Es zeigt sich ein deutlicher Bezug zur Sprungantwort. Die ersten beiden nach unten zeigenden Spitzen sind der Rest der invertierten Halbwelle des Hochtöners innerhalb des Koaxillautsprechers. Der richtig gepolte Superhochtöner zeigt sich in der ersten nach oben gerichteten Wellenform. Die Amplitude ist geringer als bei dem Originalsignal. Daher ist nicht nur die Lautstärke des erzeugten Signals, sondern auch die Dynamik geringer.  
+
| In this measurement with a sine half wave all (linear and non-linear) distortions are included. A clear relation to the step response can be seen. The first two peaks pointing downwards are the residue of the inverted half-wave of the tweeter within the coaxial loudspeaker. The correctly poled super-tweeter shows up in the first upward pointing waveform. The amplitude is lower than the original signal. Therefore, not only the volume of the generated signal is lower, but also the dynamics.  
  
Sobald ein Lautsprecher eine andere Schwingung als das Eingangssignal erzeugt, verändert er den Klang! Ein verpoltes Chassis oder eine steilflankige Weiche oder Chassis mit nicht zueinander passenden Übertragungsfunktionen erzeugen falsche Schallwellen. Man kann keinesfalls darüber den originalen Klang hören. Man hört etwas anderes, Künstliches.
+
As soon as a loudspeaker produces a different vibration than the input signal, it changes the sound! A crossover with wrong polarity or a crossover with a steep flank or drivers with mismatched transfer functions produce false sound waves. You cannot hear the original sound at all. You hear something else, something artificial.
  
 
|}
 
|}
  
=== Weitere Beispiele ===
+
=== Other examples ===
Die folgenden Beispiele zeigen die Genauigkeit der Reproduktion einer Halbwelle in absteigender Reihenfolge. Der Zusammenhang mit einer mehr oder weniger idealen Sprungantwort wird dabei offensichtlich.
+
The following examples show the accuracy of reproducing a half-wave in descending order. The connection with a more or less ideal step response becomes obvious.
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
| '''[[Myro Whisky]]'''  
 
| '''[[Myro Whisky]]'''  
[[Datei:Whisky09Step.jpg]]
+
[[File:Whisky09Step.jpg]]
  
| [[Datei:Whisky09DM0,5,3521.jpg]]
+
| [[File:CE-RC-A,Step.jpg]]
| Zeile 1, Zelle 3
+
[[Line 1, Cell 3
 
|-
 
|-
| '''Bausatzlautsprecher mit Breitbandlautsprecher Vifa BGS119.8'''
+
| '''Kit speaker with full range driver Vifa BGS119.8''''
[[Datei:Pikoline 2 Hobby HiFi Fifa BGS119.8.jpg]]<br />
+
[[File:CE-RC-A,Step.jpg]]<br />
Das Vifa Chassis ist eine kleine Überraschung.
+
The Vifa driver is a bit of a surprise.
Das Einschwingverhalten ist innerhalb der physikalischen Möglichkeiten dieses Minitreibers tadellos.
+
Transient response is impeccable within the physical capabilities of this mini driver.
Das Ausschwingen im Hochtonbereich ist zwar membranresonanzbedingt nicht optimal, kann aber durchaus mit vielen Hochtönern mithalten.<br />
+
The excursion in the high frequency range is not optimal due to the diaphragm resonance, but can keep up with many tweeters.<br />
Der Vergleich des Vifa Breitbänders mit der Myro Whisky liegt beim Betrachten der Messdiagramme nahe.
+
The comparison of the Vifa full range driver with the Myro Whisky is obvious when looking at the measurement diagrams.
Das stützt die Aussage, dass ein signal- / zeitgenaues Mehrwegesystem sich wie ein Beitbänder mit größerer Übertragungsbandbreite, erheblich größerer Pegelfestigkeit und viel geringeren Verzerrungen verhält.
+
This supports the statement that a signal / time accurate multi-way system behaves like a Beitband with wider transmission bandwidth, much higher level stability and much lower distortion.
| [[Datei:Pikoline 2 Hobby HiFi Fifa BGS119.8,DM0,5,3521.jpg]]
+
| [[File:CE-RC-A,Step.jpg]]
 
|-
 
|-
| '''Selbstbauprojekt mit Tang Band Breitbänder + 2x Seas WA150 im Tieftonbereich'''
+
| '''DIY project with Tang Band full range driver + 2x Seas WA150 in the bass section'''
[[Datei:TB3Papier+2xSeasWA150..jpg]]<br />
+
[[File:CE-RC-A,Step.jpg]]<br />
Bei der Zweiwegebox sind die Tieftöner gegenphasig angeschlossen.
+
In the two-way cabinet, the woofers are connected in antiphase.
Das ist mit Ausnahme der Frequenzgangmessung auch bei allen weiteren Messungen ersichtlich und führt zu deutlichen Signalverzerrungen.
+
With the exception of the frequency response measurement, this is also evident in all other measurements and leads to significant signal distortion.
Der Tang Band Breitbänder weist zudem heftige Hochtonresonanzen auf.
+
The Tang Band full range driver also shows heavy high frequency resonances.
| [[Datei:TB3Papier+2xSeasWA150,DM0,5,3521.jpg]]
+
| [[File:TB3Papier+2xSeasWA150,DM0,5,3521.jpg]]
  
 
|-
 
|-
| '''Teilaktiver Dreiwege-Standlautsprecher mit 2 aktiv angesteuerten Tieftönern'''  
+
| '''Partially active three-way floorstanding loudspeaker with 2 actively driven woofers'''  
[[Datei:CE-RC-A,Step.jpg]]
+
[[File:CE-RC-A,Step.jpg]]
| [[Datei:CE-RC-A,DM0,5,3521.jpg]]
+
| [[File:CE-RC-A,DM0,5,3521.jpg]]
  
| Zeile 2, Zelle 3
+
[[Line 2, Cell 3
 
|}
 
|}
  

Latest revision as of 13:03, 31 October 2020

Template:Delete candidate

The first example[edit]

What effect does the step response have on the distortion of a (music) signal?
The following examples will illustrate that the distortion of an input signal is directly related to the step response of a loudspeaker. There is a clear correlation between the distortion of the step response and the distortion of all other signals / sounds. The characteristic with which loudspeakers distort signals is evident in every signal shape, i.e. regardless of whether it is a square wave, a sine wave or a complex musical signal. The ear hears pressure fluctuations in a temporal sequence. If you manipulate the time component, you change the signal structure. And what you then hear is always the changed pressure fluctuations. We always hear the effects when pressure waves are time-shifted. Reasoning: Because that's all we can hear!

Beispiel K 0,5 sinus 3521 Hz.jpg
Beispiel K step.jpg

A loudspeaker with this step response is measured. It is a coaxial loudspeaker with an additional super tweeter. The super tweeter and the bass-midrange driver are polarized the same. The tweeter within the coaxial speaker is inverted. The first tip up is from the super tweeter.
(Note: So-called "super-tweeters" or coupled basses destroy the characteristic of the point source, unless it is already limited by partial oscillations).

With the distortion factor these transient distortions are not to describe and corresponding measurements capture the problem not.

DM 0,5 sinus.jpg On the left we see the test signal of a sine half-wave in two dimensions. The pitch is clearly audible for a single half-wave, i.e. if you shift the base frequency or change the frequency of characteristic dips and peaks, the perception moves with it.

Below we see the corresponding sound response of the example speaker. The measurement frequency is 3521 Hz.

In this measurement with a sine half wave all (linear and non-linear) distortions are included. A clear relation to the step response can be seen. The first two peaks pointing downwards are the residue of the inverted half-wave of the tweeter within the coaxial loudspeaker. The correctly poled super-tweeter shows up in the first upward pointing waveform. The amplitude is lower than the original signal. Therefore, not only the volume of the generated signal is lower, but also the dynamics.

As soon as a loudspeaker produces a different vibration than the input signal, it changes the sound! A crossover with wrong polarity or a crossover with a steep flank or drivers with mismatched transfer functions produce false sound waves. You cannot hear the original sound at all. You hear something else, something artificial.

Other examples[edit]

The following examples show the accuracy of reproducing a half-wave in descending order. The connection with a more or less ideal step response becomes obvious.

Myro Whisky

Whisky09Step.jpg

CE-RC-A,Step.jpg

[[Line 1, Cell 3

Kit speaker with full range driver Vifa BGS119.8'

CE-RC-A,Step.jpg
The Vifa driver is a bit of a surprise. Transient response is impeccable within the physical capabilities of this mini driver. The excursion in the high frequency range is not optimal due to the diaphragm resonance, but can keep up with many tweeters.
The comparison of the Vifa full range driver with the Myro Whisky is obvious when looking at the measurement diagrams. This supports the statement that a signal / time accurate multi-way system behaves like a Beitband with wider transmission bandwidth, much higher level stability and much lower distortion.

CE-RC-A,Step.jpg
DIY project with Tang Band full range driver + 2x Seas WA150 in the bass section

CE-RC-A,Step.jpg
In the two-way cabinet, the woofers are connected in antiphase. With the exception of the frequency response measurement, this is also evident in all other measurements and leads to significant signal distortion. The Tang Band full range driver also shows heavy high frequency resonances.

TB3Papier+2xSeasWA150,DM0,5,3521.jpg
Partially active three-way floorstanding loudspeaker with 2 actively driven woofers

CE-RC-A,Step.jpg

CE-RC-A,DM0,5,3521.jpg

[[Line 2, Cell 3


<zurück: Myroklopädie>
<zurück: Myro>